Хелпикс

Главная

Контакты

Случайная статья





Е. П. Ильин 6 страница



Глава 3. Функциональные (базовые активационные) состояния 73

Таблица 3.2

Колеблемость латентного периода и времени двигательной реакции

(%) при различной степени растяжения мышц

Размах колебаний, %

Испытуемые

латентного периода

времени двигательной реакции

Угол20- Отималь- угол6(). угодЖ Опхималь-ныи угол                                     ныи угол

39,0 33,6 39,5 29,2 21,6 25,0
56,8 29,6 53,5 40,0 31,5 43,7
31,0 22,3 40,7 37,3 22,2 31,0
36,6 26,6 29,1 54,5 37,7 50,8
36,6 28,4 33,9 29,5 15,5 26,4
33,3 12,1 29,0 37,2 23,8 23,1
37,3 28,1 33,3 77,0 46,0 60,8
57,0 51,5 67,0 35,9 25,2 36,3
В среднем 39,7 29,0 40,7 42,6 27,9 37,1

Таблица 3.3

Колеблемость точности движений в зависимости от амплитуды

движений

Амплшуда, град.
Ошибка в воспроизведении угла, % 11,5 7,6 5,9 5,0 6,6 6,6
Сигма 3,3 5,3 3,5 3,7 4,4 5,5
Коэффициент изменчивости 16,8 12,2 7,0 6,7 7,5 8,1
Амплитуда колебаний 16,1 13,8 10,2 10,1 11,3 10,9

меннои вариативности выполнения операций и к увеличению коли­чества ошибок.

Аналогичный факт (уменьшение колеблемости при оптимальном состоянии) выявлен в моем исследовании и в отношении сензорной функции двигательной системы.

Изучение точности движений при различных амплитудах показа­ло, что наименьшая колеблемость наблюдается при оптимальной ам­плитуде движений. Разброс повышается при увеличении или умень­шении амплитуды по сравнению с оптимальной. Чем дальше ампли­туда от оптимальной, тем вариабильность больше (табл. 3.3).

74 Раздел II. Активационные состояния

Колеблемость выражалась в данном случае в двух показателях Первый — амплитуда колебаний — демонстрировал разницу между наибольшей и наименьшей величинами показателя (размах колеба­ний) в процентах. Второй показатель — коэффициент изменчиво­сти — статистический, служил проверкой для достоверности с точки зрения статистики вычисляемого нами показателя — амплитуды ко­лебаний. Как видно из табл. 3.2, принципиальных различий в дина­мике колеблемости, выраженной двумя способами, нет. Поэтому мож­но считать, что выявленная динамика изменения амплитуды колеба­ний отражает истинное положение вещей.

При изучении глазомера была получена та же закономерность — при среднем расстоянии наряду с большей точностью наблюдалась и наименьшая колеблемость. Так, при малом расстоянии амплитуда ко­лебаний равнялась 5,6%, при среднем — 4,0, при большом — 4,4%.

Данные других авторов также свидетельствуют, что при оптималь­ных условиях — колеблемость наименьшая. 3. А. Бычкова (1963) по­казала, что оптимальный интервал между раздражителями давал и наименьший размах колебаний латентного периода. С. М. Арутюнян (1964) отмечает, что для правильного ритма движений у штангистов оптимальным является вес, равный 90-95% максимального. С при­ближением к оптимальному весу уменьшалась вариативность пара­метров движения.

Исходя из этих фактов можно заключить, что третьим признаком оптимального состояния является наибольшая стабильность прояв­ления максимума функции.

Адекватность реагирования

При изучении проприоцептивной чувствительности во всех ее про­явлениях (оценка амплитуды движений, веса груза и прилагаемых усилий) мы столкнулись с фактом, что в зависимости от того, больше или меньше данный раздражитель его оптимальной величины, оцен­ка раздражителя по качеству будет совершенно различной. Если раз­дражитель больше оптимального, то он оценивается большим, чем он есть в действительности, и в результате этого при воспроизведении получаются недоводы. Если раздражитель меньше оптимального — картина обратная. В пределах же оптимального раздражителя, поми­мо того что наиболее часто оценка раздражителя совершенно аде­кватна его величине, переоценки и недооценки встречаются одинако-

Глава 3. Функциональные (базовые активационные) состояния 75

во часто, что в совокупности также дает правильное представление о величине раздражителя. В данном случае колеблемость характеризу­ется центрированностью показателей около средней величины с ко­лебаниями в ту и другую сторону. Это свидетельствует об уравнове­шенности возбудительно-тормозных процессов в нервных центрах. Седов (1963) также отмечает, что при усилии больше оптимального отмечаются переоценки, а при усилии меньше оптимального — недо­оценки.

Итак, в отношении сензорной функции двигательной системы еще одним признаком следует признать адекватность оценки раздражите­ля по качеству.

Сходное явление можно выявить и в отношении моторной функ­ции двигательной системы. Так, в упомянутом исследовании Ильина и Пауперовой было получено, что чрезмерная стимуляция мышц их растяжением приводит к увеличению времени реагирования вместо его уменьшения. Собственно, это следует и из закона оптимума-пес-симума Введенского, согласно которому сверхоптимальные по силе раздражители приводят к различным фазам парабиоза (уравнитель­ной и парадоксальной).

Инерционность (устойчивость) оптимального состояния

Изучая зависимость точности движений от степени удаленности за­данной амплитуды движений от оптимальной (Ильин, 1963), я вы­явил у одной трети лиц факт, что если для воспроизведения задается близкая к оптимуму амплитуда, то она не различается испытуемым от оптимальной и испытуемый воспроизводит не заданную ему амп­литуду, а оптимальную.

Так, для 55 человек в среднем оптимальная амплитуда равнялась 49,0 град. При попытке воспроизвести углы на 5 град, больше или меньше оптималь­ного данные лица показали в среднем амплитуду, равную 49,3 град., т. е. практически равную оптимальной. Некоторые не могли различить задан­ную амплитуду движений даже в том случае, если она расходилась с вели­чиной оптимальной амплитуды на 10 град.

Отмеченный факт можно рассматривать как проявление инерци­онности в работе нервных центров, которые не могут выйти из состо­яния оптимума, если возмущающий их стимул ненамного отличается от оптимального.

76 Раздел II. Активационные состояния

Тот факт, что отмеченная особенность ветре! илась нам только у од­ной трети обследованных лиц, не может служить опровержением его как самостоятельного признака оптимального состояния. Следует учесть, что брались относительно большие интервалы между опти­мальной и задаваемой амплитудами (5 град.), при которых свойство инерционности мопо и не выявиться. Несомненно, что при меньших различиях в амплитудах таких случаев было бы гораздо больше.

Данное свойство оптимального состояния проявлялось и при вос­произведении мышечных усилий.

Сходные закономерности также имеются в литературных данных, относящихся к моторной функции двигательной системы.

Л. Е. Любомирский (1963) установил для своих испытуемых оптималь­ный темп движений, равный 60-80 ударам в минуту. При задавании темпа 50 ударов в минуту он усваивался плохо и во многих случаях трансфор­мировался в оптимальный темп (60 и больше). Многие испытуемые не усваивали и темп 90 ударов в минуту. Этот темп часто трансформировал­ся в более редкий.

М. И. Виноградов и К. С. Точилов( 1948), тренируя испытуемых к новому темпу движений (более высокому или более низкому по сравнению с ин­дивидуальным темпом), наблюдали, что вновь выбираемый произвольный темп располагается между старым произвольным и новым (тренируемым) темпами. Авторы объясняют это инерционностью доминантной установ­ки двигательной системы (старого оптимального состояния), т. е. прямо характеризуют оптимальное состояние тем признаком, о котором сейчас идет речь.

Факт инерционности (устойчивости) оптимального состояния получен рядом авторов и на нервно-мышечном препарате животных. Л. В. Латма-низова (1949) пишет, что оптимальный ритм нерва настойчиво возникает по самым различным поводам. А. Н. Кабанов (1957) отмечает, ч го при опре­деленной силе раздражения орган отвечает своим рабочим, оптимальным ритмом даже в том случае, если эти раздражения наносятся с меньшей, чем оптимальная, частотой. Так, в ответ на сравнительно редкие раздражения (30-50 в с) и небольшой силе тока — 20 миллиампер в нервном волокне возникает соответствующий медленный ритм возбуждений. При усилении тока нерв нередко отвечает более частым ритмом возбуждения, близким к оптимальному, хотя частота раздражений осталась прежней.

Таким образом, с одной стороны, наблюдается стремление рабо­тающей системы вернуться в оптимальные условия работы, а с дру­гой — трудность, с какой система выводится возмущающими стиму-

Глава 3. Функциональные (базовые актиаационные) состояния 77

лами из оптимального состояния. Все это дает основание заключить, что оптимальное состояние характеризуется инерционностью (устой­чивостью).

Быстрое врабатывание

В ходе более или менее продолжительной работы функциональное состояние работающих систем достигает своего максимума не сразу, т. е. существует период врабатывания. О. Розанова и Е. Петрова (1938) при оптимальном темпе движений наблюдали более быструю врабатываемость (достижение максимума коэффициента полезного действия при повторных 30-секундных отрезках работ), чем при не­оптимальном темпе работы.

Если судить о периоде врабатывания по уменьшению латентного периода моторных реакций, то данные С. И. Горшкова (1963) также могут свидетельствовать о более быстрой врабатываемости при сред­них нагрузках: при небольших нагрузках латентный период снижает­ся до самого конца работы, т. е. долгое время не наступает максималь­ная работоспособность; при средней нагрузке латентный период до­стигает наименьших величин уже к середине работы; при больших нагрузках латентный период сразу увеличивается, т. е. работоспособ­ность по этому показателю вообще не увеличилась.

Данные Е. А. Бабаевой (1938), согласно которым предварительная работа в большем или меньшем темпе, чем рабочий (оптимальный), увеличивала период врабатывания (по темпу), а предварительная ра­бота в рабочем (оптимальном) темпе ускоряла период врабатывания (по сравнению с врабатыванием без предварительной работы), также можно рассматривать как доказательство того, что при оптимальных условиях период врабатывания короче.

Быстрое восстановление

До сих пор рассматривались данные, демонстрирующие скорость вхождения в работу. Имеются, однако, данные, показывающие, что и период восстановления происходит при оптимальных условиях рабо­ты быстрее, чем при неоптимальных. И. В. Муравов (1964) отмечает, что после оптимальной нагрузки, примененной в качестве активного отдыха, наблюдается более быстрое восстановление после рабочих сдвигов кровообращения и дыхания, функций, от которых в значи­тельной мере зависит работоспособность двигательной системы.

78 Раздел II. Активационные состояния

В. И. Завьялов (1962) показал, что длительность восстановитель­ного периода для мышц кролика наиболее короткая при средних сте­пенях утомления.

Суммируя все эти данные, можно прийти к выводу, что при опти­мальных условиях работы, с одной стороны, наблюдается более быст­рый переход от состояния покоя к максимуму работоспособности, а с другой — после прекращения работы — более быстрое возвращение к исходному уровню. Эти данные дают основание говорить о том, что оптимальное состояние работающей системы обладает наибольшей подвижностью, под которой мы понимаем скорость, с какой та или иная функция переходит от покоя к максимуму и обратно.

Синхронность работы блоков функциональной системы

Н. В. Голиков (1950), изучая биоэлектрические потенциалы в мыш­цах, нервах и нервных центрах, установил, что явления дисперсии (разнобоя) в импульсации исчезают или резко ослабевают при опти­мальном ритмическом раздражении, уступая место синхронизации биопотенциалов при одновременном возрастании мощности рефлек­торного электрического ответа. Очень сильные раздражения в его опытах вновь вели к трансформации ритмов и асинхронное™ разря­дов, увеличению дисперсии.

По данным А. Н. Кабанова и Н. Н. Леонтьевой (1964), наибольшее удержание максимального напряжения (т. е., с нашей точки зрения, проявление двух признаков оптимума — максимум функции и боль­шая выносливость) наблюдается в случае, когда больше всего выра­жена синхронность колебательных процессов (биотоков) в двигатель­ных единицах.

Исходя из этого можно полагать, что оптимальное состояние на­ряду с вышеуказанными признаками должно характеризоваться и наибольшей синхронностью функциональных единиц (блоков), осу­ществляющих какую-либо функцию.

Подытоживая изложенный материал, нужно отметить, что все при­знаки характеризуют, по сути дела, максимум различных сторон про­изводительности труда — экстремум работоспособности, длительно­сти работы, стабильности, устойчивости, адекватности реагирования, подвижности и согласованности в действиях различных функциональ­ных блоков, осуществляющих эту работу. Именно поэтому работоспо­собность при оптимальных условиях труда оказывается наибольшей.

Глава 3. Функциональные (базовые активационные) состояния 79

3.6. Значение состояния покоя (исходного фона) для достижения оптимального рабочего состояния

Является ли состояние покоя пассивным фоном, не оказывающим никакого влияния на величину ответной реакции (работоспособность функциональной системы), или же существует оптимальное состоя­ние покоя, на фоне которого при соответствующих воздействиях на человека проявляется его оптимальное рабочее состояние?

Чтобы выяснить это, требовались экспериментальные данные, ко­торые бы подтвердили наличие или отсутствие оптимального состоя­ния системы в покое.

Такие данные были получены мною при изучении зависимости расслабления мышц от величины тонуса покоя. В результате обработ­ки всех случаев, в которых имелось j .ослабление мышц с величиной их тонуса покоя, удалось выявить, что наибольшая степень расслаб­ления мышц соответствует средним величинам тонуса покоя в пре­делах диапазона, при котором наблюдается реакция расслабления (табл. 3.4).

Таблица 3.4 Степень расслабления мышц

при различном исходном

тонусе покоя
Исходные величины тонуса, усл. ед. 56,0 58,7 57,3 60,4 64,6 Больше 65
Р/П* 0,96 0,955 0,955 0,931 0,944 0,954

"Показатель Р/П показывает отношение тонуса расслабления к тонусу по­коя (чем меньше показатель, тем больше расслабление мышц).

Изучение зависимости латентного периода и времени движения от степени растяжения мышц тоже показало наличие оптимальных ве­личин исходного состояния (покоя), при которых оптимальные реак­ции в ответ на действие оптимального раздражителя осуществляются ярче всего (табл. 3.5).

Из приведенных данных видно, что растяжение мышц вызывало наибольшее уменьшение латентного периода и времени движений в том случае, если в исходном состоянии их величины были не слиш­ком низкими и не слишком высокими, а находились на среднем (опти­мальном) уровне.

80 Раздел II. Активационные состояния

Таблица 3.5

Зависимость выраженности оптимальной реакции от исходной

величины латентного периода и времени движения

Показатель Исходные величины показателя (средние), мс Снижение величин показателя под влиянием растяжения мышц, %
  9,2
Латентный период 16,0
  11,0
Время движений 141 172 215 16,5 24,4 17,9

Сходные данные были выявлены и другими исследователями. О. Д. Якимова (1964) отмечает, что высокие показатели динамомет­рии соответствуют среднему уровню тонуса мышц. Т. П. Фанагорская (1958) установила, что время преодоления дистанции лучше при сред­них величинах тонуса, устанавливающихся после разминки. При ма­лых и больших величинах скорость бега уменьшается.

К близкому выводу приходит также П. А. Рудик в отношении по­следней фазы предрабочей настройки — сосредоточения. Он полага­ет, что поскольку сосредоточение внимания — «процесс динамиче­ский, развивающийся от исходного среднего уровня данной функции до необходимого ее высшего предельного состояния с неизбежным за­тем снижением интенсивности психического процесса» (Рудик, 1967), ему должна предшествовать «зона комфорта», соответствующая мак­симуму сосредоточенности, в которой двигательные импульсы про­являются наиболее успешно.

Предпусковое повышение возбудимости тоже должно быть опти­мальным по величине, что отчетливо видно на так называемом пред­стартовом состоянии, которое встречается не только у спортсменов, но и у всех людей перед ответственной деятельностью (у артистов, студентов перед экзаменами и т. д.). Известно, что излишнее волне­ние (стартовая лихорадка), так же как и равнодушие к предстоящей деятельности вследствие перевозбуждения (стартовая апатия), не способствует проявлению человеком максимальной работоспособно­сти. Нужен оптимум предстартового возбуждения (Пуни, 1949).

Глава 3. Функциональные (базовые активационные) состояния 81

Таблица 3.6

Колебание латентного периода при различном исходном состоянии

и эффект растяжения мышц (снижение ЛП)

Величина латентного периода в исходном состоянии, мс Колебание латентного периода в исходном состоянии, % Эффект растяжения мышц (снижение ЛП), %
21,2 38,8 9,8
23,7 41,5 16,0
26,0 32,9 11,0

Итак, экспериментальные данные свидетельствуют о наличии оп­тимально-исходного функционального состояния двигательного ап­парата, при котором выявляется наибольшая работоспособность. А поскольку наибольшая работоспособность связана с оптимальным рабочим состоянием двигательного аппарата, то обнаруживаются связь и зависимость оптимального рабочего состояния с оптимальным состоянием в покое этой системы.

Какими же признаками обладает система в состоянии покоя? Экс­периментально удалось выявить (Ильин, 1974) только один признак: при оптимальном состоянии покоя колебание оказывается наиболь­шим (табл. 3.6).

По-видимому, выявленные отношения между величиной колеба­ний в покое и при работе имеют общий характер, так как А. Г. Фалале-ев (1964) и С. К. Сарсания (1966) показали, что коэффициент вариа­тивности длительности сердечных и дыхательных циклов во время работы человека ниже, чем в покое.

Разбирая вопрос об оптимальном состоянии покоя и его значении для последующей деятельности, мы касаемся более общего вопроса: о значении исходного фона для возникновения реакции того или иного типа. Дело, оказывается, не только в том, что при оптимальном состо­янии покоя наблюдается в последующем наибольшая реакция, а в не­оптимальном состоянии покоя — меньшая реакция, но и в том, что при неоптимальном состоянии покоя могут возникать неадекватные для данной ситуации (извращенные) реакции.

Еще в своих первых работах И. М. Сеченов продемонстрировал, что быстрота и сила реакции у спинальных животных зависят не толь­ко от особенностей стимула, но и от исходного положения конечно­стей животного. Сходные с этим факты были получены Магнусом и Шеррингтоном. Н. Е. Введенский и А. А. Ухтомский (1909) показали,

82 Раздел II. Активационные состояния

Таблица 3.7

Зависимость типа реакции при попытке расслабить мышцы

от исходных величин тонуса покоя

что при одном состоянии системы ее раздражение приводит к возбуж­дению, а при другом функциональном состоянии тот же раздражитель приводит к торможению. Эго положение в дальнейшем было развито Н. В. Голиковым (1950) в его законе об оптимуме лабильности. В за­висимости от уровня лабильности один и тот же раздражитель может вызвать либо возбуждение, либо торможение, либо успокаивание ткани.

Перечисленные факты были получены в опытах на животных. Мною сходные данные выявлены при исследованиях, проведенных на людях.

В одном из исследований я столкнулся с фактом, что иногда даже тренированные люди не в состоянии дополнительно расслабить мыш­цы рук, т. е. снизить тонус мышц по сравнению с покоем (Ильин, 1961). Наоборот, вместо снижения величины тонуса у них наблюда­лось повышение тонуса, т. е. реакция, обратная той, которая ожида­лась. Анализ экспериментального материала показал, что такие реак­ции наблюдаются, когда тонус покоя был выше или ниже, чем обычно.

Проведенные в дальнейшем массовые обследования подтвердили: для того чтобы получить реакцию дополнительного произвольного расслабления мышц, требуются средние величины тонуса покоя. В са­мом простом виде эту зависимость можно видеть в табл. 3.7.

Надо отметить, что извращенные реакции при низком тонусе покоя встречаются в несколько раз чаще, чем при высоком тонусе покоя.

Эти данные показывают, что расслабление мышцы (рабочий эф­фект деятельности двигательной системы) наблюдается только при определенном исходном функциональном состоянии двигательной системы.

Конечно, эти данные ни в коей мере не говорят о том, что именно при этих величинах тонуса покоя при попытке расслабить мышцу будет наблюдаться тот или иной тип реакции. Они средние для всех

Тонус покоя, усл. ед. 58,8 60,0 61,9 Больше 62,0
Типы реакции Извращенная (увеличение тонуса) Тонус не изменился Адекватная (расслабле­ние) Извращенная (увеличение тонуса)

Глава 3. Функциональные (базовые активационные) состояния 83

обследованных и приведены нами лишь для иллюстрации того, что при низких величинах тонуса покоя больше шансов получить извра­щенную реакцию, чем при средних его величинах.

Зависимость того или иного типа реакции от исходного функцио­нального состояния наблюдалась и при изучении точности движений в связи с различным темпом их выполнения. В данных опытах извра­щенность реакций выражается в том, что вместо ожидаемого эффекта повышения или снижения точности при смене быстрого темпа на мед­ленный и наоборот мы получаем обратную картину. Например, если у данного испытуемого смена медленного темпа на быстрый обычно приводила к увеличению точности движений (т. е. для него более оп­тимальным был быстрый темп), то при большой точности движений уже в исходном состоянии (до смены темпа) изменение темпа вызы­вало обратную реакцию — увеличение ошибки и, следовательно, сни­жение точности.

Наконец, роль исходного фона для типа получаемой реакции вы­явлена при изучении влияния растяжения мышц на величину латен­тного периода и времени движения (Ильин, Пауперова, 1967). В ряде случаев можно было наблюдать извращенные реакции, которые за­ключались в следующем. Обычно, увеличивая до определенной сте­пени растяжение мышц предплечья, мы фиксировали снижение ве­личины латентного периода и времени движения. При чрезмерном же растяжении время зрительно-двигательной реакции вновь увели­чивалось и даже превышало исходные величины (без растяжения мышц). Извращение же указанной реакции, соответствующей прояв­лению закона оптимума силы раздражения, состояло в том, что вмес­то ожидаемого снижения величины показателей мы, наоборот, полу­чали их увеличение при средних степенях растяжения, а при большом растяжении латентный период и время движения вновь снижались. И опять причиной извращения реакции в большинстве случаев ока­зались низкие величины изучаемых показателей в исходном состоя­нии (перед растяжением). Так, в одном случае при нормальных реак­циях величины латентного периода были в пределах 230-280 мс, при извращенных — 205-225 мс.

Если представить полностью картину зависимости величины и типа реакции от исходного функционального состояния работающей системы, то она будет такой: при малых исходных величинах тонуса покоя наблюдаются извращенные реакции (причем чем меньше тонус,

84 Раздел II. Активационные состояния

тем больше величина извращения), при средних — адекватная (рас­слабление мышц), причем степень адекватности зависит от величин тонуса: при оптимальных величинах расслабление наибольшее, а даль­ше повышение тонуса вызывает уменьшение степени расслабления, и при больших величинах тонуса вновь могут появиться извращен­ные реакции.

Итак, важное место в оптимизации деятельности человека должно уделяться связи оптимального рабочего состояния системы с опти­мальным состоянием покоя.

Данная связь базируется на общей закономерности зависимости эффекта раздражения не только от особенностей стимула, но и от ис­ходного функционального состояния (фона), на которое падает раздра­жение. Рассматриваемый вопрос имеет и общетеоретическое, и прак­тическое значение.

Теоретический аспект вопроса заключается в том, что «функцио­нальный фон» рассматривается как фактор, вклинивающийся между сигналом н реакцией и определяющий во многом судьбу последней. Тем самым отвергается упрощенный подход к связи между стимулом и реакцией, существовавший еще со времен Декарта и его механисти­ческих представлений о рефлекторной дуге. Принцип «стимул — ре­акция» поддерживался зарубежными психологами старой школы в ви­де «гипотезы непосредственности», согласно которой внешний мир действует и изменяет психику человека непосредственно, без участия организма как физического целого. В силу таких представлений че­ловек игнорировался как субъект.

Значение промежуточного звена между стимулом и реакцией под­черкивается многими авторами. Так, С. Л. Рубинштейн (1946) утверж­дает, что внешнее воздействие определяет конечный эффект не пря­мо, но опосредуется внутренними условиями (принцип «внешнее че­рез внутреннее»). В состав этих опосредствующих условий входят физиологические и психические процессы и состояния. Наконец, вы­воды П. К. Анохина (1973), Н. А. Бернштейна (1961), Ф. Б. Бассина (1963) также свидетельствуют о том, что реакция организма форми­руется с учетом внутреннего состояния организма.

Второй аспект обсуждаемого вопроса об оптимальном состоянии покоя касается практического использования полученных фактов. До сих пор в психологической литературе (обзор которой дан в работе Б. Ф. Ломова, 1967), когда речь заходит об оптимизации условий тру­да оператора, главным образом обсуждается одна сторона вопроса —

Глава 3. Функциональные (базовые активационные) состояния 85

оптимальные характеристики сигналов. Выделяют оптимальные зоны раздражителей, при которых они адекватно воспринимаются анали­заторами. В пределах этого большого диапазона раздражителей нахо­дят оперативные пороги, т. е. те оптимальные величины, которые обес­печивают наилучшую различимость сигналов. Другая же сторона во­проса в системе «человек—машина» — функциональное состояние оператора, или исходный фон, на котором воспринимаются сигна­лы, — часто остается вне поля зрения. Между тем именно для учета исходного состояния Дж. К. Стивене и С. С. Стивене (Stevens & Ste­vens, 1962) предлагают ввести понятие о «физиологическом нуле», т. е. необходимость учитывать имеющийся в данный момент абсолютный порог чувствительности, применительно к которому нужно оценивать интенсивность действующего раздражителя.

Существует также понятие о физиологической силе раздражите­лей, которая учитывает не только физическую величину раздражите­ля, но и значимость ее для организма. Последняя же в значительной степени определяется исходным состоянием.

Отсюда с очевидностью следует, что при нахождении факторов, определяющих оптимальное рабочее состояние человека, следует ис­ходить из того, что эффективность деятельности человека зависит как от внешних условий (величины сигналов, вызывающих ответные дви­гательные реакции, параметров движений при манипулировании с органами управления), так и от внутреннего состояния человека, ко­торое обусловливается многими факторами (морфофизиологически-ми особенностями, возрастными и половыми различиями, уровнем тренированности, наконец, колеблемостью функционального состоя­ния в микроинтервалах времени). Поэтому выбор той или иной опти­мальной величины сигнала или параметра движения должен проис­ходить с учетом функционального состояния человека. Поскольку эффект деятельности человека определяется указанными выше фак­торами, встает задача придания этой системе (стимул—действие чело­века) постоянного соответствия величины стимула функционально­му состоянию двигательной системы. Конечно, человек как самоопти­мизирующая система более лабилен по сравнению с техническими устройствами, с которыми он имеет дело. Поэтому на первый взгляд основное внимание должно быть обращено на «подрегулирование» человека. Однако при этом надо иметь в виду, что любая живая систе­ма, в том числе и человек, имеет предел такого «подрегулирования» (доведение ее функционального состояния до соответствия стимулу,



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.