Хелпикс

Главная

Контакты

Случайная статья





Происхождение Вселенной 2 страница



Существуют довольно убедительные наблюдения, позволяющие предположить, что черные дыры примерно такого размера существуют как источник рентгеновского излучения в системе двойной звезды, известной под именем X‑I Лебедя. Может быть также огромное множество разбросанных по Вселенной очень маленьких черных дыр, которые образовались в результате коллапса не звезды, а сильно сжатой области в горячей плотной среде, предположительно существовавшей вскоре после Большого Взрыва, из которого произошла Вселенная. Такие «первобытные» черные дыры представляют огромный интерес с точки зрения их квантового эффекта, который я опишу ниже. Черная дыра весом в миллиард тонн (примерно масса горы) имела бы радиус около 10–13 сантиметра (размер нейтрона или протона). Она могла бы двигаться по орбите вокруг Солнца или центра Галактики.

Первый намек, что между черными дырами и термодинамикой может существовать связь, сделало математическое открытие 1970 года, утверждающее, что площадь поверхности горизонта событий, границ черной дыры, обладает свойством всегда возрастать, когда в черную дыру падает дополнительная материя или излучение. Более того, если две черные дыры столкнутся и сольются в одну, площадь горизонта событий вокруг этой новой черной дыры будет больше, чем сумма площадей двух первоначальных. Эти свойства предполагают, что между площадью горизонта событий черной дыры и понятием энтропии в термодинамике существует сходство. Энтропию можно рассматривать как меру беспорядка системы или, что то же самое, как недостаток знаний о ее точном состоянии. Знаменитый второй закон термодинамики гласит, что энтропия со временем всегда возрастает.

Аналогию между свойствами черной дыры и законами термодинамики расширили Джеймс М. Бардин из Вашингтонского университета, Брендон Картер, работающий сейчас в Мьюдонской обсерватории, и я. Первый закон термодинамики гласит, что малое изменение энтропии системы сопровождается пропорциональным изменением энергии системы. Коэффициент пропорциональности называется температурой системы. Бардин, Картер и я нашли схожий закон, касающийся изменения массы черной дыры и площади горизонта событий. Здесь коэффициентом пропорциональности является величина, называемая поверхностной гравитацией, которая является мерой силы гравитационного поля на горизонте событий. Если допустить, что площадь горизонта событий аналогична энтропии, то поверхностная гравитация окажется аналогичной температуре. Сходство усиливается тем фактом, что поверхностная гравитация оказывается одинаковой во всех точках горизонта событий, так же как при тепловом равновесии температура одинакова по всему телу.

Хотя между энтропией и площадью горизонта событий существует явное сходство, нам не очевидно, как площадь можно отождествлять с энтропией черной дыры. Что для черной дыры означает энтропия? Решающее предположение сделал в 1972 году Якоб Д. Бекенштейн, учившийся тогда на последнем курсе Принстонского университета, а ныне работающий в Негевском университете в Израиле. Суть примерно такова: когда в результате гравитационного коллапса получается черная дыра, она быстро устанавливается в стационарное состояние, характеризуемое всего тремя параметрами: массой, моментом импульса и электрическим зарядом. Кроме этих трех, черная дыра не сохраняет никаких других свойств сжавшегося объекта. Данное заключение, известное как теорема «Черная дыра не имеет волос», было подтверждено нашей совместной работой с Брендоном Картером, Вернером Израэлем из Альбертского университета и Дэвидом К. Робинсоном из лондонского Кингс‑колледжа.

Из теоремы об отсутствии волос вытекает, что при гравитационном коллапсе теряется большой объем информации. Например, окончательное состояние черной дыры не зависит от того, состояло ли сжавшееся тело из материи или антиматерии, было ли оно круглым или совсем неправильной формы. Иными словами, черная дыра данной массы, момента импульса и электрического заряда может образоваться в результате коллапса любой одной или множества разных конфигураций материи. В самом деле, если пренебречь квантовыми эффектами, число конфигураций могло бы быть бесконечным, поскольку черная дыра может быть образована в результате коллапса целой тучи бесконечного числа частиц с бесконечно малой массой.

Из принципа неопределенности в квантовой механике, однако, следует, что частица с массой т ведет себя как волна с длиной h / mc , где h – постоянная Планка (малое число 6,62 х 10–27 эрг‑секунд), а с – скорость света. Чтобы облако частиц смогло сжаться в черную дыру, необходимо, чтобы эта длина волны была меньше, чем размер получившейся черной дыры. Таким образом оказывается, что число начальных состояний, из которых может сформироваться черная дыра с данными массой, моментом импульса и электрическим зарядом, хотя и очень велико, может быть конечным. Бекенштейн предположил, что логарифм этого числа можно интерпретировать как энтропию черной дыры. Логарифм этого числа будет мерой количества информации, безвозвратно теряемой за горизонтом событий во время коллапса при возникновении черной дыры. Очевидным изъяном в предположении Бекенштейна было то обстоятельство, что если черная дыра имеет конечную энтропию, пропорциональную площади ее горизонта событий, она должна иметь и конечную температуру, пропорциональную ее поверхностной гравитации. Из этого можно сделать вывод, что черная дыра находится в равновесии с тепловым излучением при некоторой ненулевой температуре. Однако согласно классической концепции такое равновесие невозможно, поскольку черная дыра поглотила бы любое упавшее на нее тепловое излучение, но по определению не смогла бы выделить ничего взамен.

Этот парадокс оставался нерешенным до 1974 года, когда я исследовал, как будет вести себя материя вблизи черной дыры согласно квантовой механике. К своему великому удивлению, я обнаружил, что черная дыра постоянно испускает частицы. Как и все в то время, я принимал без сомнений, что черная дыра не может ничего испускать. Поэтому я потратил очень много усилий, пытаясь избавиться от такого ошеломляющего эффекта. Однако он отказывался исчезать, и в конце концов мне пришлось его признать. Но что меня окончательно убедило в реальности этого физического процесса, так это тот факт, что вылетающие частицы имели в точности тепловой спектр: черная дыра создает и выделяет частицы, как обычное горячее тело с температурой, пропорциональной поверхностной гравитации и обратно пропорциональной массе. Это сделало предположение Бекенштейна о конечной энтропии черной дыры полностью непротиворечивым, поскольку получалось, что черная дыра может находиться в термическом равновесии при некоторой отличной от нуля температуре.

С тех пор математическая строгость того, что черная дыра может излучать тепло, была доказана многими другими людьми со множеством разных подходов. Один из способов понять это состоит в следующем. Квантовая механика утверждает, что все пространство заполнено парами из «виртуальных» частиц и античастиц, которые постоянно материализуются в пары, разделяются, а потом соединяются вновь и взаимно уничтожаются (аннигилируют). Эти частицы называются «виртуальными» в отличие от реальных, потому что их нельзя наблюдать прямо, посредством детектора частиц. Их косвенный эффект, тем не менее, можно измерить, и существование таких частиц было подтверждено небольшим смещением («смещением Ламба»), вносимым ими в спектр света от возбужденных атомов водорода. Теперь, при наличии черной дыры, один член такой пары «виртуальных» частиц может упасть в дыру, оставив другого без партнера для аннигиляции. Оставленная в одиночестве частица или античастица может упасть в черную дыру вслед за партнером, но может и улететь в бесконечность, где покажется излучением черной дыры.

Другой способ взглянуть на этот процесс – считать члена пары частица‑античастица, падающей в черную дыру (скажем, античастицу), реальной частицей, но идущей по времени в обратном направлении. Таким образом, античастицу, падающую в черную дыру, можно рассматривать как частицу, вылетающую из черной дыры, но в обратном времени. Достигнув точки, в которой пара частица‑античастица изначально материализовалась, она рассеивается гравитационным полем так, чтобы двигаться по времени в прямом направлении.

Таким образом, квантовая механика позволяет частице вырваться из черной дыры, чего не допускает классическая механика. Однако в ядерной и атомной физике есть много других ситуаций, когда существует некоторый барьер, который по классическим принципам частицы преодолеть не могут, но через который могут проложить тоннель согласно принципам квантовой механики.

Толщина барьера вокруг черной дыры пропорциональна размеру черной дыры. Следовательно, только очень немногие частицы могут вырваться из такой большой черной дыры, каковой предположительно является X‑I Лебедя, но из черных дыр поменьше частицы могут просачиваться весьма быстро. Тщательные расчеты показывают, что выпущенные частицы имеют тепловой спектр, соответствующий температуре, возрастающей с той же скоростью, с какой убывает масса черной дыры. Температура черной дыры с массой Солнца составляет всего лишь одну десятимиллионную градуса относительно абсолютного нуля. Тепловое излучение, покидающее черную дыру с такой температурой, совершенно поглотилось бы радиационным фоном Вселенной. С другой стороны, черная дыра с массой всего миллиард тонн, то есть первобытная черная дыра размером примерно с протон, имела бы температуру около 120 миллиардов градусов Кельвина, что соответствует энергии в несколько десятков миллионов электрон‑вольт. При такой температуре черная дыра могла бы порождать электронно‑позитронные пары и частицы пулевой массы, такие как фотоны, нейтрино и гравитоны (предположительно несущие гравитационную энергию). Первобытная черная дыра выделяла бы энергию с мощностью порядка 6000 мегаватт, что равно мощности шести больших ядерных электростанций.

Поскольку черная дыра испускает частицы, ее масса и размеры постоянно уменьшаются. Это облегчает другим частицам возможность проделать тоннель наружу, и потому эмиссия будет продолжаться, постоянно возрастая, пока в конце концов черная дыра не сойдет на нет. Таким образом, в конечном итоге все черные дыры во Вселенной испарятся, однако для этого понадобится действительно долгое время: черная дыра с массой Солнца просуществует 1066 лет. С другой стороны, первобытная черная дыра должна почти полностью испариться за десять миллиардов лет, что прошло со времени Большого Взрыва, когда, как нам известно, возникла Вселенная. Такие черные дыры теперь должны испускать жесткое гамма‑излучение с энергией около 100 миллионов электрон‑вольт.

Подсчеты, сделанные Доном Н. Пейджем, работавшим тогда в Калифорнийском технологическом институте, и мной, основывались на измерениях космического фона гамма‑радиации со спутника SAS‑2 и показали, что средняя плотность первобытных черных дыр должна была быть меньше, чем примерно двести дыр на кубический световой год. Локальная плотность в нашей Галактике могла быть в миллион раз больше этой величины, если бы первобытные черные дыры сконцентрировались в «гало» галактик – тонком облаке быстро движущихся звезд, куда погружена каждая галактика, – а не распределились бы равномерно по всей Вселенной. Из этого следует, что ближайшая к Земле первобытная черная дыра, вероятно, находится по меньшей мере на том же расстоянии, что и Плутон.

Последняя стадия испарения черной дыры происходит так быстро, что заканчивается страшным взрывом. Какова мощность этого взрыва, зависит от того, как много в черной дыре разновидностей элементарных частиц. Если, согласно широко распространенному сейчас мнению, все частицы состоят из шести разновидностей кварков, в последнем взрыве выделится энергия, равная энергии почти десяти миллионов водородных бомб мощностью в одну мегатонну каждая. С другой стороны, альтернативная теория, выдвинутая Р. Хейдждорном из CERN, Европейской организации по ядерным исследованиям в Женеве, утверждает, что существует бесконечное множество элементарных частиц все большей массы. По мере того как черная дыра делается все меньше и горячее, она испускает все больше и больше разнообразных частиц, и, возможно, взрыв окажется в 100 ООО раз мощнее, чем рассчитанный на основе кварковой гипотезы. Поэтому наблюдение взрыва черной дыры дало бы нам очень ценную информацию о физике элементарных частиц – информацию, которую не получить никаким иным способом.

Взрыв черной дыры произведет мощный выброс высокоэнергетичного гамма‑излучения. Хотя его можно заметить детекторами гамма‑лучей на спутниках или воздушных шарах, было бы непросто запустить детектор достаточного размера, чтобы получить существенный шанс уловить значительное число гамма‑фотонов от одного взрыва. Возможно, когда‑нибудь при помощи космического челнока удастся построить большой детектор гамма‑лучей на орбите, но более легкой и дешевой альтернативой было бы использовать в качестве детектора верхние слои земной атмосферы. Высокоэнергетичные гамма‑лучи, входя в атмосферу, произведут ливень электронно‑позитронных пар, которые вначале будут проходить через атмосферу со скоростью выше скорости света (свет замедляется взаимодействием между молекулами). Таким образом, электроны и позитроны произведут нечто вроде звукового барьера, вроде ударной волны в электромагнитном поле. Такую ударную волну, называемую излучением Черепкова, можно выявить с земли как зримую световую вспышку.

Предварительные эксперименты Нейла А. Портера и Тревора К. Уикса из дублинского Юниверсити‑колледжа показали, что, если черные дыры взрываются так, как предсказывает теория Хейдждорна, за век в нашей области Галактики случается менее двух взрывов черной дыры на кубический световой год. Из этого следует, что плотность первобытных черных дыр меньше, чем 100 миллионов дыр на кубический световой год.

Наверное, существует возможность значительно увеличить чувствительность таких наблюдений, и даже если они не дадут никакого положительного свидетельства о первобытных черных дырах, то все равно будут представлять собой большую ценность. Если наблюдения установят низкий верхний предел плотности таких черных дыр во Вселенной, они покажут, что ранняя Вселенная должна была быть очень ровной и не турбулентной.

Большой Взрыв схож со взрывом черной дыры, но в гораздо большем масштабе. Поэтому можно надеяться, что, поняв, как черные дыры порождают частицы, мы придем к аналогичному пониманию, как Большой Взрыв породил все во Вселенной. В черной дыре материя сжимается и пропадает навек, но на ее месте возникает новая материя. Поэтому, может быть, существовала какая‑то более ранняя фаза Вселенной, когда материя сжималась, чтобы опять возникнуть после Большого Взрыва.

Если материя, сжавшаяся в черную дыру, имела какое‑то сальдо электрического заряда, получившаяся черная дыра будет иметь такой же заряд. Это означает, что черная дыра имеет тенденцию притягивать члены пар виртуальных частиц‑античастиц с противоположным зарядом и отталкивать члены с таким же зарядом. Следовательно, черная дыра будет испускать преимущественно частицы с зарядом того же знака, что имеет сама, и быстро разрядится. Аналогично, если сжимающаяся материя имеет сальдо момента импульса, черная дыра будет вращаться и преимущественно испускать частицы, отбирающие ее момент импульса. Причина, почему черные дыры «запоминают» электрический заряд, момент импульса и массу сжимающейся материи, которая «забывает» все остальное, заключается в том, что эти три величины сочетаются с полями, действующими на большом расстоянии: в случае заряда – с электромагнитным полем, а в случае момента импульса и массы – с гравитационным.

Эксперименты Роберта X. Дика из Принстонского университета и Владимира Брагинского из Московского государственного университета показали, что не существует далеко действующих полей, которые соответствовали бы квантовому свойству, называемому барионным числом (барионы – это класс частиц, включающий в себя протоны и нейтроны). Следовательно, черная дыра, получившаяся в результате сжатия множества барионов, забудет свое барионное число и будет излучать равное количество барионов и антибарионов. Поэтому, когда черная дыра исчезнет, она нарушит один из самых нежно любимых законов физики частиц – закон сохранения барионов.

Хотя гипотеза Бекенштейна о конечной энтропии черных дыр для своей стройности требует, чтобы черные дыры излучали тепло, тем не менее, на первый взгляд, кажется истинным чудом, что тщательные расчеты квантовой механики, касающиеся возникновения частиц, говорят о появлении излучения с тепловым спектром. Объясняется это тем, что выпущенные частицы проделывают тоннель из черной дыры, о которой внешний наблюдатель не знает ничего, кроме ее массы, момента импульса и электрического заряда. Это означает, что все сочетания или конфигурации выпущенных частиц, имеющих одну и ту же энергию, момент импульса и электрический заряд, одинаково вероятны. В самом деле, возможно, что черная дыра выпустит телевизор или десятитомник Пруста в кожаном переплете, но число конфигураций частиц, соответствующее таким экзотическим возможностям, бесконечно мало. Гораздо большее число конфигураций соответствует излучению со спектром, близким к тепловому.

Излучение черных дыр добавило еще большую степень неопределенности, или непредсказуемости, к той, что и так ассоциировалась с квантовой механикой. В классической механике можно предсказать результаты измерения как скорости, так и положения частицы. В квантовой механике принцип неопределенности гласит, что можно предсказать результат лишь одного из измерений – либо скорости, либо положения, но не обоих. Таким образом, способность наблюдателя делать определенные предсказания, по сути, урезается наполовину. С черными дырами ситуация еще хуже. Поскольку частицы, излученные черной дырой, приходят из области, о которой наблюдатель имеет ограниченные знания, он не может с определенностью предсказать ни скорость, ни положение частиц, ни какую‑либо их комбинацию. Все, что он может предсказать, – это вероятность, с которой определенные частицы будут выпущены. И потому, кажется, Эйнштейн вдвойне ошибся, сказав: «Бог не играет в кости». Рассмотрев испускание частиц черной дырой, похоже, мы можем сказать, что Бог не только играет в кости, но порой еще и бросает их там, где никто не видит.

 

11. Черные дыры и младенцы‑вселенные[16]

 

Падение в черную дыру стало одним из ужасов научной фантастики. Па самом деле о черных дырах сейчас можно сказать, что это научный факт, а не фантастика. Как я покажу ниже, есть достаточные основания утверждать, что черные дыры должны существовать, и наблюдения четко указывают на присутствие в нашей Галактике множества черных дыр, а в других галактиках их еще больше.

Конечно, описывать, что происходит, когда надаешь в черную дыру, – это поистине раздолье для фантастов. Обычно предполагают, что если черная дыра вращается, то можно провалиться через дырочку в пространстве‑времени и оказаться в другой части Вселенной. Это дает большие возможности для путешествий в космосе. И в самом деле, если путешествия на другие звезды, не говоря уж о других галактиках, в будущем окажутся осуществимыми на практике, нам понадобится нечто подобное. В противном случае тот факт, что ничто не может двигаться быстрее света, растянет путешествие к ближайшей звезде по меньшей мере лет на восемь. Многовато, чтобы провести выходные на Альфе Центавра! А вот если суметь нырнуть в черную дыру, то можно вынырнуть в любой точке Вселенной. Правда, не совсем ясно, каким образом выбрать место назначения: вы можете решить съездить на праздники в Вирго, а окажетесь в Крабовидной туманности.

Мне жаль разочаровывать галактических туристов, но этот сценарий не работает: если вы прыгнете в черную дыру, вас разорвет на части и расплющит так, что от вас ничего не останется. Однако в некотором смысле частицы, составляющие ваше тело, окажутся в другом мире. Не знаю, утешится ли превратившийся в спагетти в черной дыре сознанием того, что его частицы, возможно, уцелели.

Несмотря на мой легкомысленный тон, это эссе основано на строгой науке. С тем, что я здесь говорю, в основном согласно большинство других ученых, работающих в данной области, хотя к этому согласию они пришли не так уж давно. Однако последняя часть данного эссе основывается на совсем недавней работе, по которой пока что нет общего согласия. Но она вызывает большой интерес и привлекает к себе внимание. Хотя понятие, называемое ныне черной дырой, появилось более двухсот лет назад, само название «черная дыра» было введено лишь в 1967 году американским физиком Джоном Уилером. Здесь была определенная доля гениальности: такое название гарантировало, что черные дыры войдут в мифологию научной фантастики. Оно также стимулировало научные исследования, дав имя тому, что раньше не имело удовлетворявшего всех названия. Не надо недооценивать важность хорошего имени в науке.

Насколько мне известно, первым начал обсуждать черные дыры некто по имени Джон Мичелл из Кембриджа, который в 1783 году написал о них статью. Его идея была такова. Предположим, с поверхности Земли вы выстрелили ядром из пушки вертикально вверх. По мерс подъема оно будет замедляться силой притяжения. В конце концов ядро остановится и начнет падать обратно. Однако если оно вылетит из пушки со скоростью больше некоторой критической величины, то никогда не остановится и не упадет, а продолжит свое движение вверх. Эта критическая скорость называется скоростью убегания, и для Земли она составляет 7 миль в секунду, а для Солнца – около 100 миль в секунду. Обе эти величины больше, чем скорость пушечного ядра, но гораздо меньше скорости света, равной 186 000 миль в секунду. Это означает, что гравитация не оказывает на свет существенного влияния, и он может без труда оторваться и от Земли, и от Солнца. Однако Мичелл сделал умозаключение, что может существовать звезда, достаточно массивная и достаточно маленькая по размеру, чтобы ее скорость убегания оказалась больше скорости света. Мы не сможем увидеть такую звезду, потому что свет с ее поверхности до нас не дойдет, а будет притягиваться обратно гравитационным полем. Однако ее присутствие можно обнаружить по воздействию ее гравитационного поля на окружающую материю.

На самом деле свет не совсем корректно сравнивать с пушечным ядром. Согласно эксперименту, проведенному в 1897 году, свет всегда движется с постоянной скоростью. Тогда как же гравитация может его замедлить? Стройной теории, как гравитация влияет на свет, не было до 1915 года, когда Эйнштейн сформулировал свою общую теорию относительности. ИI даже после этого выводы из его теории для старых звезд и других массивных тел не были сделаны до шестидесятых годов.

Согласно общей теории относительности, время и пространство вместе можно рассматривать как единое четырехмерное пространство, получившее название пространство‑время. Это пространство не плоское, оно искажается, или искривляется, материей и заключенной в ней энергией. Мы наблюдаем это искривление по отклонению света и радиоволн, проходящих по пути к нам мимо Солнца. Когда свет проходит вблизи Солнца, отклонение очень мало. Однако если бы Солнце сжалось до размеров всего нескольких миль в поперечнике, отклонение было бы столь велико, что свет не смог бы улететь, а был бы притянут гравитационным полем. Согласно теории относительности, ничто не может двигаться быстрее света, поэтому образуется область, откуда не может вырваться ничто. Такая область называется черной дырой, а ее границы – горизонтом событий. Его образует свет, едва не вырвавшийся из черной дыры, но оставшийся парить на краю.

Предположение, что Солнце может сжаться до диаметра в несколько миль, может показаться смешным. Трудно допустить, что материя способна сжаться до такой степени. Но оказывается – способна.

Солнце имеет такие размеры, потому что оно горячее. Оно пережигает водород в гелий, как управляемая водородная бомба. Тепло, выделяемое в результате этого процесса, создает давление, позволяющее Солнцу противостоять собственной гравитации, которая стремится сжать его, сделать меньше.

Однако в конце концов у Солнца кончится ядерное топливо. Этого не случится еще примерно пять миллиардов лет, так что можно не спешить заказывать билет на другую звезду. Тем не менее звезды более массивные, чем Солнце, пережгут свой водород гораздо быстрее.

Когда топливо у них кончится, они начнут остывать и сжиматься. Если их масса по крайней мере вдвое превышает массу Солнца, они в конце концов прекратят сжиматься, и состояние их стабилизируется. Одни звезды в таком состоянии называются белыми карликами. Белый карлик имеет радиус в несколько тысяч миль и плотность в сотни тонн на кубический дюйм. Другие звезды в таком состоянии называются нейтронными звездами. Они имеют радиус около 10 миль и плотность в миллион тонн на кубический дюйм.

Мы наблюдаем большое число белых карликов в непосредственной близости от нашей Галактики. Нейтронные же звезды не наблюдались до 1967 года, пока Джойселин Белл и Энтони Хьюиш из Кембриджа не открыли объекты, названные пульсарами, которые испускали радиоволны регулярными импульсами. Сначала исследователи подумали, уж не установили ли они контакт с чужой цивилизацией, – я даже помню, что аудитория, где они объявили о своем открытии, была разукрашена фигурками «зеленых человечков». Однако под конец они сами и все остальные пришли к менее романтическому заключению, что эти объекты – вращающиеся нейтронные звезды. Такое заключение оказалось плохой новостью для создателей космических вестернов, но хорошей для нас, тех немногих ученых, кто верил тогда в черные дыры. Если звезды могут сжиматься до таких малых размеров, как 10 или 20 миль в поперечнике, и становиться нейтронными звездами, можно предположить, что другие смогли сжаться еще больше и превратиться в черные дыры.

Звезда с массой примерно вдвое больше массы Солнца становится белым карликом или нейтронной звездой. В некоторых случаях звезда может взорваться и выбросить достаточно материи, чтобы ее масса стала меньше предельной. Но это случается не всегда. Некоторые звезды станут очень маленькими, и их гравитационное поле так искривит свет, что он упадет обратно на звезду. И больше ни свет, ни что‑либо другое не сможет вырваться оттуда. Такие звезды станут черными дырами.

Физические законы симметричны во времени. Поэтому если существуют объекты, называемые черными дырами, в которые все может падать, но ничто не может вырваться, должны быть и другие объекты, из которых все может вылететь, но ничто не может в них упасть. Можно назвать их белыми дырами. Можно также порассуждать о том, что если прыгнуть в черную дыру в одном месте, то выйдешь из белой дыры в другом. Это был бы идеальный метод для вышеупомянутых дальних космических путешествий. Все, что вам понадобится, – это отыскать поблизости черную дыру.

На первый взгляд такая форма космических путешествий кажется возможной. В общей теории относительности Эйнштейна существуют решения, согласно которым можно упасть в черную дыру и выйти из белой дыры. Однако более поздняя работа показала, что все эти решения очень нестабильны: малейшее возмущение, такое как присутствие космического корабля, уничтожит «отверстие» – проход, ведущий из черной дыры в белую. Космический корабль был бы разорван бесконечно большими силами. Это вроде того, как путешествовать по Ниагаре в бочке.

После этого надежды почти не осталось. Черные дыры можно было бы использовать разве что для избавления от мусора или даже от некоторых друзей. Они были «страной, откуда не возвращаются». Однако все, что я сказал до сих пор, основывалось на расчетах, использующих общую теорию относительности Эйнштейна. Эта теория прекрасно согласуется со всеми нашими наблюдениями. Но мы знаем, что она не может быть совершенно права, поскольку не охватывает принцип неопределенности квантовой механики. Принцип неопределенности гласит, что частицы не могут одновременно иметь и четко определенного положения, и четко определенной скорости. Чем точнее измеряешь положение частицы, тем менее точно измеряешь скорость, и наоборот.

В 1973 году я начал исследования, пытаясь выяснить, какое значение имеет принцип неопределенности для черных дыр. К моему, да и ко всеобщему великому удивлению, обнаружилось, что вследствие этого принципа черные дыры должны быть не совсем черными. Они постоянно выделяют излучение и частицы. Когда я доложил о своих результатах на конференции под Оксфордом, они вызвали общее недоверие. Председатель сказал, что это нонсенс, и написал об этом статью. Однако, когда другие повторили мои расчеты, они обнаружили тот же самый эффект. Так что под конец даже председатель согласился с моей правотой.

Как может излучение вырваться из гравитационного поля черной дыры? Есть много путей понять это. И хотя они кажутся очень разными, на самом деле они эквивалентны. Один путь – осознать, что принцип неопределенности позволяет частицам на короткой дистанции двигаться быстрее света. Это, в свою очередь, позволяет им и излучению прорваться через горизонт событий и вырваться из черной дыры. Следовательно, из черной дыры что‑то может исходить. Однако то, что выходит, будет сильно отличаться от того, что туда упало. Той же самой будет только энергия.

Поскольку черная дыра испускает частицы и излучение, она должна терять массу. От этого черная дыра должна становиться меньше и эмиттировать частицы с большей частотой. В конце концов она дойдет до нулевой массы и совсем исчезнет. Что же тогда случится с объектами, упавшими в черную дыру, включая, возможно, и космические корабли? Согласно некоторым моим недавним работам, ответ таков: они перейдут в собственную новорожденную вселенную. Маленькая замкнутая вселенная возникает из нашей области Вселенной. Эта вселенная может снова присоединиться к нашей области пространства‑времени, при этом она покажется нам другой черной дырой, которая появилась, а потом испарилась. Частицы, упавшие в одну черную дыру, покажутся частицами, выпущенными из другой, и наоборот.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.