|
|||||||||||||||||||||||||||||||||||
В1Формулы дифференцирования В2 Таблица основных интеграловСтр 1 из 2Следующая ⇒ В1Формулы дифференцирования В2 Таблица основных интегралов
Правила интегрирования Основные правила дифференцирования Пусть С—постоянная, u=u(x), v=v(x) – функции, имеющие производные.
7)
В 4 Интегрирование по частям Основные свойства определённого интеграла Интегрирование простейших дробей
Замена переменной в неопределенном интеграле
Площадь плоской фигуры Площадь криволинейной трапеции, ограниченной кривой , прямыми и отрезком[a, b] оси Ox, вычисляется по формуле
Площадь фигуры, ограниченной кривыми и прямыми , находится по формуле
Если кривая задана параметрическими уравнениями , то площадь криволинейной трапеции, ограниченной этой кривой, прямыми и отрезком[a, b] оси Ox, выражается формулой
где определяются из уравнений
Площадь криволинейного сектора, ограниченного кривой, заданной в полярных координатах уравнением и двумя полярными радиусами находится по формуле
В 6 Длина дуги плоской кривой
Если кривая y=f(x) на отрезке [a, b] – гладкая (т.е. производная непрерывна), то длина соответствующей дуги этой кривой находится по формуле
При параметрическом задании кривой x=x(t), y=y(t) [x(t) и y(t) – непрерывно дифференцируемые функции] длина дуги кривой, соответствующая монотонному изменению параметра , вычисляется по формуле
Если гладкая кривая задана в полярных координатах уравнением , то длина дуги равна
|
|||||||||||||||||||||||||||||||||||
|