Хелпикс

Главная

Контакты

Случайная статья





Выведем основное логарифмическое тождество: а log a b = b



 

Тема сегодняшнего урока - Логарифм и их свойства (откройте тетради и запишите дату и тему).

 

На этом уроке мы познакомимся с понятием «логарифм», также рассмотрим свойства логарифмов. Тема эта актуальна, т.к. логарифм всегда встречается на итоговой аттестации по математике.

 

Зададим вопрос:

1) В какую степень нужно возвести 3, чтобы получить 9? Очевидно, во вторую. Показатель степени, в которую нужно возвести число 3, чтобы получить 9, равен 2.

2) В какую степень нужно возвести 2, чтобы получить 8? Очевидно, во вторую. Показатель степени, в которую нужно возвести число 2, чтобы получить 8, равен 3.

 

Во всех случаях мы искали показатель степени, в которую нужно что-то возвести, чтобы что-то получить. Показатель степени, в которую нужно что-то возвести называется логарифмом и обозначается log.

 

Число, которое мы возводим в степень, т.е. основание степени, называется основанием логарифма и записывается в нижнем индексе. Затем пишется число, которое мы получает, т.е. число, которое мы ищем: log3 9=2

Эта запись читается так: «Логарифм числа 9 по основанию 3». Логарифм числа 9 по основанию 3 это показатель степени, в которую нужно возвести 3, чтобы получить 9. этот показатель равен 2.

 

Дадим определение логарифма.

Определение. Логарифмом числа b>0 по основанию a>0, a ≠ 1  называется показатель степени, в которую надо возвести число a, чтобы получить число b.

 

Логарифмом числа b по основанию a обозначаетсяloga b.

  История возникновения логарифма:

Логарифмы были введены шотландским математиком Джоном Непером (1550-1617) и математиком Иостом Бюрги (1552-1632).

Бюрги пришел к логарифмам раньше, но опубликовал свои таблицы с опозданием (в 1620г.), а первой в 1614г. появилась работа Непера «Описание удивительной таблицы логарифмов».

С точки зрения вычислительной практики, изобретение логарифмов по возможности можно смело поставить рядом с другими, более древним великим изобретением индусов – нашей десятичной системы нумерации.

Через десяток лет после появления логарифмов Непера английский ученый Гунтер изобрел очень популярный прежде счетный прибор – логарифмическую линейку.

Она помогала астрономам и инженерам при вычислениях, она позволяла быстро получать ответ с достаточной точностью в три значащие цифры. Теперь ее вытеснили калькуляторы, но без логарифмической линейки не были бы построены ни первые компьютеры, ни микрокалькуляторы.

 

Рассмотрим примеры:

log327=3; log525=2; log255=1/2; log5 1/125=-3; log-2-8- не существует; log51=0; log44=1

 

Рассмотрим такие примеры:

10. loga1=0, а>0, a ≠ 1;

20. logaа=1, а>0, a ≠ 1.

Эти две формулы являются свойствами логарифма. Запишите свойства и их необходимо запомнить.

 

В математике принято следующее сокращение:

log10а= lg а- десятичный логарифм числа а (буква «о» пропускается, а основание 10 не ставят).

logеа= ln а - натуральный логарифм числа а. «е» - это такое иррациональное число, равное » 2,7 (буква «о» пропускается, а основание «е» не ставят).

Рассмотрим примеры:

lg 10=1; lg 1=0

ln e=1 ; ln 1=0 .

 

Как перейти из логарифмического равенства к показательному: logаb=с, с – это логарифм, показатель степени, в которую нужно возвести а, чтобы получить b. Следовательно, а степени с равен b: а с= b.

Рассмотрим пять логарифмических равенств. Задание: проверить их правильность. Среди этих примеров есть ошибки. Для проверки воспользуемся данной схемой.

lg 1 = 2 (10 2=100)- это равенство не верное.

log1/2 4 = 2- это равенство не верное.

log31=1 - это равенство не верное.

log1/3 9 = -2 - это равенство верное.

log416 = -2- это равенство не верное.

Выведем основное логарифмическое тождество: а log a b = b

 

Рассмотрим пример.

5 log 5 13 =13

Свойства логарифмов:

3°. logа ху = logах + logау.

4°. logа х/у = logах - logау.

5°. logах p = p · logах, для любого действительного p.

 

Рассмотрим пример на проверку 3 свойства:

log28 + log232= log2 8∙32= log2 256=8

   3 +5       =          8

Рассмотрим пример на проверку 5 свойства:

3∙ log28= log283= log2512 =9

     3∙3    = 9

Формула перехода от одного основания логарифма к другому основанию:

 

 


Эта формула потребуется при вычислении логарифма по калькулятору.

Возьмем пример: log3 7 = lg7 / lg3. В калькуляторе можно вычислить только десятичный и натуральный логарифм. Вводим цифру 7 и нажмем кнопку «лог», также вводим цифру 3 и нажмем кнопку «лог», делим верхнее значение на нижнее и получаем ответ.

 

  1. Закрепление.

Для закрепления новой темы решим примеры.

Пример 1. Назовите свойство, которое применяется при вычислении следующих логарифмов, и вычислите (устно):

log66

log 0,51

log63+ log62

log36- log32

log448

Пример 2.
Перед вами 8 решённых примеров, среди которых есть правильные, остальные с ошибкой. Определите верное равенство (назовите его номер), в остальных исправьте ошибки.

  1. log232+ log22= log264=6
  2. log553 = 2;
  3. log345 - log35 = log340
  4. 3∙log24 = log2 (4∙3)
  5. log315 + log33 = log345;
  6. 2∙log56 = log512
  7. 3∙log23 = log227
  8. log2162 = 8.

 

  1. самостоятельная работа.

 Вычислите:

1) log416

2) log25125

3) log82

4) log66

Вычислите:

1) log327

2) log4 8

3) log49 7

4) log55

 

 

 

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.