|
|||
Кроме s- и p-орбиталей, существуют электронные орбитали еще более сложной формы; их обозначают буквами d и f. Попадающие сюда электроны приобретают еще больший запас энергии, двигаются по сложным путям, и в итоге получаются сложные и красивые объемные гео
Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Южно-Уральский государственный университет» (национальный исследовательский университет)
Факультет лингвистики и международной коммуникации Кафедра «Зарубежное регионоведение»
Электронные орбитали. Понятие и s- и p- связи. Реферат по дисциплине (специализации) «Концепции современного естествознания»
Исполнитель: Студент группы ЛМ-105 Муратова И. А.
Челябинск 2016 год
Оглавление Орбитали. 4 Пять типов орбиталей. 5 s-Орбитали. 6 Р-орбитали. 7 Единственный электрон атома водорода образует вокруг ядра сферическую орбиталь - шарообразное электронное облако, вроде неплотно намотанного клубка пушистой шерсти или ватного шарика. 10 d и f - Орбитали. 11 Сигма- и пи-связи. 12 Кратные связи. 13 Метод валентных связей. 14
ОРБИТАЛЬ – область наиболее вероятного местонахождения электрона в атоме (атомная орбиталь) или в молекуле (молекулярная орбиталь). К настоящему моменту описано пять типов орбиталей: s, p, d, f и g. Названия первых трех сложились исторически, далее был выбран алфавитный принцип. Формы орбиталей вычислены методами квантовой химии. s (sharp) — резкая серия в атомных спектрах, p (principal)— главная, d (diffuse) — диффузная, f (fundamental) — фундаментальная. Гибридизация орбиталей представляется как интерференция колебаний. s-Орбитали, как было показано выше, имеют сферическую форму и, следовательно, одинаковую электронную плотность в направлении каждой оси трехмерных координат: На первом электронном уровне каждого атома находится только одна s-орбиталь. У s-элементов - заполняется s-подуровень внешнего уровня. Все s-элементы, кроме водорода и гелия, - металлы главных подгрупп 1 и 2 групп периодической системы элементов. У элементов первого периода есть только один s-подуровень, образованный одной s-орбиталью, на которой может находиться не более 2 электронов. Поэтому в 1 периоде только 2 элемента - водород Н и гелий Не.
Начиная со второго электронного уровня помимо s-орбитали появляются также три р-орбитали. Они имеют форму объемных восьмерок, именно так выглядит область наиболее вероятного местонахождения р-электрона в районе атомного ядра. Каждая р-орбиталь расположена вдоль одной из трех взаимоперпендикулярных осей, в соответствии с этим в названии р-орбитали указывают с помощью соответствующего индекса ту ось, вдоль которой располагается ее максимальная электронная плотность: У p-элементов заполняется p-подуровень внешнего энергетического уровня. Это элементы главных подгрупп 3-8 групп ПСЭ, большинство из них - неметаллы. На p-подуровне 3 орбитали, т. е. максимальное число р-электронов - 6. Всего на внешнем уровне могут заполняться электронами 1 s- и 3 р-орбитали, т. е. максимально - 8 электронов. На втором энергетическом уровне есть только 1 s- и 3 р-орбитали, поэтому во 2 периоде - 8 элементов. Т. к. на внешнем электронном слое заполняются только s- и р-подуровни, то и в 3 периоде - тоже 8 элементов, хотя на 3 энергетическом уровне и появляется d-подуровень.
В современной химии орбиталь – определяющее понятие, позволяющее рассматривать процессы образования химических связей и анализировать их свойства, при этом внимание сосредотачивают на орбиталях тех электронов, которые участвуют в образовании химических связей, то есть, валентных электронов, обычно это электроны последнего уровня.
Единственный электрон атома водорода образует вокруг ядра сферическую орбиталь - шарообразное электронное облако, вроде неплотно намотанного клубка пушистой шерсти или ватного шарика. Сферическую атомную орбиталь ученые договорились называть s-орбиталью. Она самая устойчивая и располагается довольно близко к ядру. Чем больше энергия электрона в атоме, тем быстрее он вращается, тем сильнее вытягивается область его пребывания и наконец превращается в гантелеобразную p-орбиталь: Электронное облако такой формы может занимать в атоме три положения вдоль осей координат пространства x, y и z. Это легко объяснимо: ведь все электроны заряжены отрицательно, поэтому электронные облака взаимно отталкиваются и стремятся разместиться как можно дальше друг от друга. Все вместе три электронных облака, которые называют px-, py- или pz-орбиталями, образуют симметричную геометрическую фигуру, в центре которой находится атомное ядро. Она похожа на шестиконечный помпончик или на тройной бант - кому как нравится. Итак, p-орбиталей может быть три. Энергия их, конечно, одинакова, а расположение в пространстве - разное.
Кроме s- и p-орбиталей, существуют электронные орбитали еще более сложной формы; их обозначают буквами d и f. Попадающие сюда электроны приобретают еще больший запас энергии, двигаются по сложным путям, и в итоге получаются сложные и красивые объемные геометрические фигуры. Все d-орбитали (а их может быть уже пять) одинаковы по энергии, но по-разному расположены в пространстве. Да и по форме, напоминающей перевязанную лентами подушечку, одинаковы только четыре.
У d-элементов заполняется d-подуровень предвнешнего (второго снаружи) энергетического уровня (= электронного слоя). Это все металлы побочных подгрупп (кроме лантаноидов и актиноидов). На d-подуровне 5 орбиталей, максимальное число электронов - 10. Начиная с 4 периода, сначала у элементов заполняется s-подуровень внешнего уровня (до 2 электронов), затем - d-подуровень предвнешнего уровня (до 10 электронов), затем - р-подуровень внешнего уровня (до 6 электронов). Поэтому в 4 и 5 периодах по 18 элементов. У f-элементов заполняется 3-й снаружи электронный слой, это лантаноиды и актиноиды (все они - металлы). Всего на f-подуровне 7 орбиталей, т. е. возможно 14 электронов. Поэтому в 6 периоде, у элементов которых заполняется 5f-подуровень, всего 32 элемента; 7 период – незавершенный. Сигма- и пи-связи (s- и p-связи), ковалентные химические связи, характеризующиеся определенней, но различной пространственной симметрией распределения электронной плотности. Как известно, ковалентная связь образуется в результате обобществления электронов взаимодействующих атомов. Результирующее электронное облако s-связи симметрично относительно линии связи, т. е. линии, соединяющей ядра взаимодействующих атомов. Простые связи в химических соединениях обычно являются (т-связями (см. Простая связь). Электронное облако p-связи симметрично относительно плоскости, проходящей через линию связи (рис. 1, б), причём в этой плоскости (называемой узловой) электронная плотность равна нулю. Употребление греческих букв s и p связано с соответствием их латинским буквам s и р в обозначении электронов атома, при участии которых впервые появляется возможность для образования s- и p-связей соответственно. Поскольку облака атомных р-орбиталей (px, ру, pz) симметричны относительно соответствующих осей декартовых координат (х, у, z), то, если одна р-орбиталь, например pz, принимает участие в образовании s-связи (ось z — линия связи), две оставшиеся р-орбитали (px, py) могут принять участие в образовании двух p-связей (их узловые плоскости будут yz и xz соответственно; см. рис. 2). В образовании s и p-связей могут принять участие также d- (см. рис. 1) и f-электроны атома. s-Связь - ковалентная связь, образованная при перекрывании s-, p- и гибридных АО вдоль оси, соединяющей ядра связываемых атомов. p-Связь - ковалентная связь, возникающая при боковом перекрывании негибридных р-АО. Такое перекрывание происходит вне прямой, соединяющей ядра атомов.
Если между атомами в молекуле возникают одновременно как s-, так и p-связи, то результирующая связь является кратной (см. Кратные связи, Двойная связь, Тройная связь, а также Валентность). p-Связи образуются между атомами, уже соединенными s-связью. Эта связь слабее s-связи из-за менее полного перекрывания р-АО. Различное строение s- и p-молекулярных орбиталей определяет характерные особенности s- и p-связей. s-Связь прочнее p-связи. Это обусловлено более эффективным перекрыванием АО при образовании s-МО и нахождением s-электронов между ядрами. По s-связям возможно внутримолекулярное вращение атомов, т. к. форма s-МО допускает такое вращение без разрыва связи (аним., 32647 байт). Вращение по p-связи невозможно без ее разрыва! Электроны на p-МО, находясь вне межъядерного пространства, обладают большей подвижностью по сравнению с s-электронами. Поэтому поляризуемость p-связи значительно выше, чем s-связи. ковалентные химические связи, характеризующиеся определенней, но различной пространственной симметрией распределения электронной плотности. Как известно, ковалентная связь образуется в результате обобществления электронов взаимодействующих атомов. Результирующее электронное облако σ -связи симметрично относительно линии связи, т. е. линии, соединяющей ядра взаимодействующих атомов. Простые связи в химических соединениях обычно являются (т-связями (см. Простая связь). Электронное облако π -связи симметрично относительно плоскости, проходящей через линию связи (рис. 1, б), причём в этой плоскости (называемой узловой) электронная плотность равна нулю. Употребление греческих букв σ и π связано с соответствием их латинским буквам s и р в обозначении электронов атома, при участии которых впервые появляется возможность для образования σ - и π -связей соответственно. Поскольку облака атомных р-орбиталей (px, ру, pz) симметричны относительно соответствующих осей декартовых координат (х, у, z), то, если одна р-орбиталь, например pz, принимает участие в образовании σ -связи (ось z — линия связи), две оставшиеся р-орбитали (px, py) могут принять участие в образовании двух π -связей (их узловые плоскости будут yz и xz соответственно; см. рис. 2). В образовании σ и π -связей могут принять участие также d- (см. рис. 1) и f-электроны атома.
Метод валентных связей
Представления о механизме образования химической связи на примере молекулы водорода распространяются и на другие молекулы. Теория химической связи, созданная на этой основе, получила название метода валентных связей (МВС). Основные положения:
1) ковалентная связь образуется в результате перекрывания двух электронных облаков с противоположно направленными спинами, причем образованное общее электронное облако принадлежит двум атомам;
2) ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака. Степень перекрывания электронных облаков зависит от их размеров и плотности;
3) образование молекулы сопровождается сжатием электронных облаков и уменьшением размеров молекулы по сравнению с размерами атомов;
4) в образовании связи принимают участие s- и p-электроны внешнего энергетического уровня и d-электроны предвнешнего энергетического уровня.
Список литературы и источников информации school-collection. edu. https: //ru. wikipedia. org
|
|||
|