|
|||
ОГЛАВЛЕНИЕ 3 страницаПриборы, применяемые для регистрации радиоактивных излучений и частиц, делятся на две группы: 1) приборы, позволяющие регистрировать прохождение частицы через определенный участок пространства и в некоторых случаях определять ее характеристики, например энергию (сцинтилляционный счетчик, черенковский счетчик, импульсная ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик); 2) приборы, позволяющие наблюдать, например фотографировать, следы (треки) частиц в веществе (камера Вильсона, диффузионная камера, пузырьковая камера, ядерные фотоэмульсии). 1. Сцинтилляционный счетчик. Наблюдениесцинтилляций — вспышек света при попадании быстрых частиц на флуоресцирующий экран — первый метод, позволивший У. Круксу* и Э. Резерфорду на заре ядерной физики (1903) визуально регистрировать a-частицы. Сцинтилляционный счетчик — детектор ядерных частиц, основными элементами которого являются сцинтиллятор (кристаллофосфор) (см. § 245) и фотоэлектронный умножитель (см. § 105), позволяющий преобразовывать слабые световые вспышки в электрические импульсы, регистрируемые электронной аппаратурой. Обычно в качестве сцинтилляторов используют кристаллы некоторых неорганических (ZnS для a-частиц; NaI-Tl, CsI-Tl — для b-частиц и g-квантов) или органических (антрацен, пластмассы — для g-квантов) веществ. * У. Крукс (1832—1919) — английский физик и химик.
Сцинтилляционные счетчики обладают высоким разрешением по времени (10–10—10–5 с), определяемым родом регистрируемых частиц, сцинтиллятором и разрешающим временем используемой электронной аппаратуры (оно доведено сейчас до 10–8—10–10 с). Для этого типа счетчиков эффективность регистрации—отношение числа зарегистрированных частиц к полному числу частиц, пролетевших в счетчике, примерно 100% для заряженных частиц и 30% для g-квантов. Так как для многих сцинтилляторов (NaI-Tl, CsI-Tl, антрацен, стильбен) интенсивность световой вспышки в широком интервале энергий пропорциональна энергии первичной частицы, то счетчики на данных сцинтилляторах применяются для измерения энергии регистрируемых частиц. 2. Черенковский счетчик. Принцип его работы и свойства излучения Вавилова — Черенкова, лежащие в основе работы счетчика, рассмотрены в § 189. Назначение черенковских счетчиков — это измерение энергии частиц, движущихся в веществе со скоростью, превышающей фазовую скорость света в данной среде, и разделение этих частиц по массам. Зная угол испускания излучения (см. (189.1)), можно определить скорость частицы, что при известной массе частицы равносильно определению ее энергии. С другой стороны, если масса частицы не известна, то она может быть определена по независимому измерению энергии частицы. Кроме того, при наличии двух пучков частиц с разными скоростями будут различными и углы испускания излучений, по которым можно искомые частицы определить. Для черенковских счетчиков разрешение по скоростям (иными словами, по энергиям) составляет 10–3 —10–5. Это позволяет отделять элементарные частицы друг от друга при энергиях порядка 1 ГэВ, когда углы испускания излучения различаются очень мало. Время разрешения счетчиков достигает 10–9 с. Счетчики Черенкова устанавливаются на космических кораблях для исследования космического излучения. 3. Импульсная ионизационная камера — это детектор частиц, действие которого основано на способности заряженных частиц вызывать ионизацию газа. Ионизационная камера представляет собой заполненный газом электрический конденсатор, к электродам которого подается постоянное напряжение. Регистрируемая частица, попадая в пространство между электродами, ионизует газ. Напряжение подбирается так, чтобы все образовавшиеся ионы, с одной стороны, доходили до электродов, не успев рекомбинировать, а с другой — не разгонялись настолько сильно, чтобы производить вторичную ионизацию. Следовательно, в ионизационной камере на ее электродах непосредственно собираются ноны, возникшие под действием заряженных частиц. Ионизационные камеры бывают двух типов:интегрирующие (в них измеряется суммарный ионизационный ток)иимпульсные, являющиеся, по существу, счетчиками (в них регистрируется прохождение одиночной частицы и измеряется ее энергия, правда, с довольно низкой точностью, обусловленной малостью выходного импульса). 4. Газоразрядный счетчик. Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра (катод) с тонкой проволокой (анод), натянутой по его оси. Хотя газоразрядные счетчики по конструкции похожи на ионизационную камеру, однако в них основную роль играет вторичная ионизация, обусловленная столкновениями первичных ионов с атомами и молекулами газа и стенок. Можно говорить о двух типах газоразрядных счетчиков: пропорциональных (в них газовый разряд несамостоятельный (см. § 106), т. е. гаснет при прекращении действия внешнего ионизатора) и счетчиках Гейгера — Мюллера* (в них разряд самостоятельный (см. § 107), т. е. поддерживается после прекращения действия внешнего ионизатора). * Э. Мюллер (1911—1977) — немецкий физик.
В пропорциональных счетчиках рабочее напряжение выбирается так, чтобы они работали в области вольт-амперной характеристики, соответствующей несамостоятельному разряду, в которой выходной импульс пропорционален первичной ионизации, т. с. энергии влетевшей в счетчик частицы. Поэтому они не только регистрируют частицу, но и измеряют ее энергию. В пропорциональных счетчиках импульсы, вызываемые отдельными частицами, усиливаются в 103 —104 раз (иногда и в 106 раз). Счетчик Гейгера — Мюллера по конструкции и принципу действия существенно не отличается от пропорционального счетчика, но работает в области вольт-амперной характеристики, соответствующей самостоятельному разряду (см. § 107), когда выходной импульс не зависит от первичной ионизации. Счетчики Гейгера — Мюллера регистрируют частицу без измерения ее энергии. Коэффициент усиления этих счетчиков составляет 108. Для регистрации раздельных импульсов возникший разряд следует гасить. Для этого, например, последовательно с нитью включается такое сопротивление, чтобы возникший в счетчике разряд вызывал на сопротивлении падение напряжения, достаточное для прерывания разряда. Временное разрешение счетчиков Гейгера—Мюллера составляет 10–3—10–7 с. Для газоразрядных счетчиков эффективность регистрации равна примерно 100% для заряженных частиц и примерно 5% для g-квантов. 5. Полупроводниковый счетчик —это детектор частиц, основным элементом которого является полупроводниковый диод (см. § 250). Время разрешения составляет примерно 10–9 с. Полупроводниковые счетчики обладают высокой надежностью, могут работать в магнитных полях. Малая толщина рабочей области (порядка сотни микрометров) полупроводниковых счетчиков не позволяет применять их для измерения высокоэнергетических частиц. 6. Камера Вильсона* (1912) — это старейший и на протяжении многих десятилетий (вплоть до 50—60-х годов) единственный тип трекового детектора. Выполняется обычно в виде стеклянного цилиндра с плотно прилегающим поршнем. Цилиндр наполняется нейтральным газом (обычно гелием или аргоном), насыщенным парами воды или спирта. При резком, т. е. адиабатическом, расширении газа пар становится пересыщенным и на траекториях частиц, пролетевших через камеру, образуются треки из тумана. Образовавшиеся треки для воспроизводства их пространственного расположения фотографируются стереоскопически, т. е. под разными углами. По характеру и геометрии треков можно судить о типе прошедших через камеру частиц (например, a-частица оставляет сплошной жирный след, b-частица — тонкий), об энергии частиц (по величине пробега), о плотности ионизации (по количеству капель на единицу длины трека), о количестве участвующих в реакции частиц. * Ч. Вильсон (1869—1959) — английский физик.
Российский ученый Д. В. Скобельцын (1892—1990) значительно расширил возможности камеры Вильсона, поместив ее в сильное магнитное поле (1927). По искривлению траектории заряженных частиц в магнитном поле, т. е. по кривизне трека, можно судить о знаке заряда, а если известен тип частицы (ее заряд и масса), то по радиусу кривизны трека можно определить энергию и массу частицы даже в том случае, если весь трек в камере не умещается (для реакций при высоких энергиях вплоть до сотен мегаэлектрон-вольт). Недостаток камеры Вильсона — ее малое рабочее время, составляющее примерно 1% от времени, затрачиваемого для подготовки камеры к последующему расширению (выравнивание температуры и давления, рассасывание остатков треков, насыщение паров), а также трудоемкость обработки результатов. 7. Диффузионная камера (1936) — это разновидность камеры Вильсона. В ней рабочим веществом также является пересыщенный пар, но состояние пересыщения создастся диффузией паров спирта от нагретой (до 10°С) крышки ко дну, охлаждаемому (до —60°С) твердой углекислотой. Вблизи дна возникает слой пересыщенного пара толщиной примерно 5 см, в котором проходящие заряженные частицы создают треки. В отличие от вильсоновской диффузионная камера работает непрерывно. Кроме того, из-за отсутствия поршня в ней могут создаваться давления до 4 МПа, что значительно увеличивает ее эффективный объем. 8. Пузырьковая камера (1952; американский физик Д. Глезер (р. 1926)). В пузырьковой камере рабочим веществом является перегретая (находящаяся под давлением) прозрачная жидкость (жидкие водород, пропан, ксенон). Запускается камера, так же как и камера Вильсона, резким сбросом давления, переводящим жидкость в неустойчивое перегретое состояние. Пролетающая в это время через камеру заряженная частица вызывает резкое вскипание жидкости, и траектория частицы оказывается обозначенной цепочкой пузырьков пара — образуется трек, который, как и в камере Вильсона, фотографируется. Пузырьковая камера работает циклами. Размеры пузырьковых камер примерно такие же, как камеры Вильсона (от десятков сантиметров до 2 м), но их эффективный объем на 2—3 порядка больше, так как жидкости гораздо плотнее газов. Это позволяет использовать пузырьковые камеры для исследования длинных цепей рождений и распадов частиц высоких энергий. 9. Ядерные фотоэмульсии (1927; российский физик Л. В. Мысовский (1888—1939)) — это простейший трековый детектор заряженных частиц. Прохождение заряженной частицы в эмульсии вызывает ионизацию, приводящую к образованию центров скрытого изображения. После проявления следы заряженных частиц обнаруживаются в виде цепочки зерен металлического серебра. Taк как эмульсия — среда более плотная, чем газ или жидкость, используемые в вильсоновской и пузырьковой камерах, то при прочих равных условиях длина трека в эмульсии более короткая. Так, трек длиной 0,05 см в эмульсии эквивалентен треку в 1 м в камере Вильсона. Поэтому фотоэмульсии применяются для изучения реакций, вызываемых частицами в ускорителях сверхвысоких энергий и в космических лучах. В практике исследований высокоэнергетических частиц используются также так называемые стопы — большое число маркированных фотоэмульсионных пластинок, помещаемых на пути частиц и после проявления промеряемых под микроскопом. В настоящее время методы наблюдения и регистрации заряженных частиц и излучений настолько разнообразны, что их описание выходит за рамки курса. Большое значение начинают играть сравнительно новые (1957) приборы — искровые камеры, использующие преимущества счетчиков (быстрота регистрации) и трековых детекторов (полнота информации о треках). Говоря образно, искровая камера — это набор большого числа очень мелких счетчиков. Поэтому она близка к счетчикам, так как информация в ней выдается немедленно, без последующей обработки, и в то же время обладает свойствами трекового детектора, так как по действию многих счетчиков можно установить треки частиц. § 262. Ядерные реакции и их основные типы Ядерные реакции — это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с g-квантами) или друг с другом. Наиболее распространенным видом ядерной реакции является реакция, записываемая символически следующим образом: где Х и Y — исходное и конечное ядра, а и b — бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы. В ядерной физике эффективность взаимодействия характеризуютэффективным сечением s. С каждым видом взаимодействия частицы с ядром связывают свое эффективное сечение: эффективное сечение рассеяния определяет процессы рассеяния, эффективное сечение поглощения — процессы поглощения. Эффективное сечение ядерной реакции где N — число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объема п ядер, dN — число этих частиц, вступающих в ядерную реакцию в слое толщиной dx. Эффективное сечение s имеет размерность площади и характеризует вероятность того, что при падении пучка частиц навещество произойдет реакция. Единица эффективного сечения ядерных процессов — барн (1 барн= 10–28 м2). В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (и сумма массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (и сумме массовых чисел) конечных продуктов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса. В отличие от радиоактивного распада, который протекает всегда с выделением энергии, ядерные реакции могут быть как экзотермическими (с выделением энергии), так и эндотермическими (с поглощением энергии). Важную роль в объяснении механизма многих ядерных реакций сыграло предположение Н. Бора (1936) о том, что ядерные реакции протекают в две стадии по следующей схеме: (262.1) Первая стадия — это захват ядром Х частицы а, приблизившейся к нему на расстояние действия ядерных сил (примерно 2×10–15 м), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбужденном состоянии. При столкновении нуклонов составного ядра один из нуклонов (или их комбинация, например дейтрон — ядро тяжелого изотопа водорода — дейтерия, содержащее один протон и один нейтрон) или a-частица может получить энергию, достаточную для вылета из ядра. В результате возможна вторая стадия ядерной реакции — распад составного ядра на ядро Y и частицу b. В ядерной физике вводится характерное ядерное время — время, необходимое для пролета частицей расстояния порядка величины, равной диаметру ядра (d»10–15 м). Так, для частицы с энергией 1 МэВ (что соответствует ее скорости v»107 м/с) характерное ядерное время t=10–15 м/107 м/с=10–22 с. С другой стороны, доказано, что время жизни составного ядра равно 10–16—10–12 с, т. е. составляет (106—1010) t. Это же означает, что за время жизни составного ядра может произойти очень много столкновений нуклонов между собой, т. е. перераспределение энергии между нуклонами действительно возможно. Следовательно, составное ядро живет настолько долго, что полностью «забывает», каким образом оно образовалось. Поэтому характер распада составного ядра (испускание им частицы b) — вторая стадия ядерной реакции — не зависит от способа образования составного ядра — первой стадии. Если испущенная частица тождественна с захваченной (bºа), то схема (262.1) описывает рассеяние частицы: упругое — при Еb=Еа, неупругое — при Еb¹Еа. Если же испущенная частица не тождественна с захваченной (b¹а), то имеем дело с ядерной реакцией в прямом смысле слова. Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерными взаимодействиями (например, реакции, вызываемые быстрыми нуклонами и дейтронами). Ядерные реакции классифицируются по следующим признакам: 1) по роду участвующих в них частиц — реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, a-частиц); реакции под действием g-квантов; 2) по энергии вызывающих их частиц — реакции при малых энергиях (порядка электрон-вольт), происходящие в основном с участием нейтронов; реакции при средних энергиях (до нескольких мегаэлектрон-вольт), происходящие с участием g-квантов и заряженных частиц (протоны, a-частицы); реакции при высоких энергиях (сотни и тысячи мегаэлектрон-вольт), приводящие к рождению отсутствующих в свободном состоянии элементарных частиц и имеющие большое значение для их изучения; 3) по роду участвующих в них ядер — реакции на легких ядрах (А< 50); реакции на средних ядрах (50<А< 100); реакции на тяжелых ядрах (А> 100); 4) по характеру происходящих ядерных превращений — реакции с испусканием нейтронов; реакции с испусканием заряженных частиц; реакции захвата (в этих реакциях составное ядро не испускает никаких частиц, а переходит в основное состояние, излучая один или несколько g-квантов). Первая в истории ядерная реакция осуществлена Э. Резерфордом (1919) при бомбардировке ядра азота a-частицами, испускаемыми радиоактивным источником: § 263. Позитрон. b+-Распад. Электронный захват П. Дираком было получено (1928) релятивистское волновое уравнение для электрона, которое позволило объяснить все основные свойства электрона, в том числе наличие у него спина и магнитного момента. Замечательной особенностью уравнения Дирака оказалось то, что из него для полной энергии свободного электрона получались не только положительные, но и отрицательные значения. Этот результат мог быть объяснен лишь предположением о существовании античастицы электрона —позитрона. Гипотеза Дирака, недоверчиво воспринимавшаяся большинством физиков, была блестяще подтверждена в 1932 г. К. Андерсеном (американский физик (р. 1905); Нобелевская премия 1936 г.), обнаружившим позитрон в составе космического излучения. Существование позитронов было доказано наблюдением их треков в камере Вильсона, помещенной в магнитном поле. Эти частицы в камере отклонялись так,какотклоняется движущийся положительный заряд. Опыты показали, что позитрон е — частица с массой покоя, в точности равной массе покоя электрона, и спином ½ (в единицах ), несущая положительный электрический заряд +е. Жолио-Кюри — Фредерик (1900—1958) и Ирен (1897—1956), — бомбардируя различные ядра a-частицами (1934), обнаружили искусственно-радиоактивные ядра (см. § 255), испытывающие b–-распад, а реакции на В, Аl и Mg привели к искусственно-радиоактивным ядрам, претерпевающим b+-распад, или позитронный распад: (Нобелевская премия 1956 г.) Наличие в этих реакциях позитронов доказано при изучении их треков в камере Вильсона, помещенной в магнитное поле. Таким образом, в экспериментах Жолио-Кюри, с одной стороны, открыта искусственная радиоактивность, а с другой — впервые обнаружен позитронный радиоактивный распад. Энергетический b+-спектр, как и b–-спектр (см. § 258), непрерывен. b+-Распад подчиняется следующему правилу смещения: Процесс b+-распада протекает так, как если бы один из протонов ядра превратился в нейтрон, испустив при этом позитрон и нейтрино: (263.1) причем одновременный выброс нейтрино вытекает из тех же соображений, которые излагались при обсуждении b–-распада (см. § 258). Так как масса покоя протона меньше, чем у нейтрона, то реакция (263.1) для свободного протона наблюдаться не может. Однако для протона, связанного в ядре благодаря ядерному взаимодействию частиц, эта реакция оказывается энергетически возможной. Вскоре после опытов К. Андерсена, а также обоснования b+-распада было установлено, что позитроны могут рождаться при взаимодействии g-квантов большой энергии (Еg > 1,02 МэВ = 2meс2) с веществом (см. также § 259). Этот процесс идет по схеме (263.2) Электронно-позитронные пары были действительно обнаружены в помещенной в магнитное поле камере Вильсона, в которой электрон и позитрон, имеющие противоположные по знаку заряды, отклонялись в противоположные стороны. Для выполнения соотношения (263.2) помимо выполнения законов сохранения энергии и импульса необходимо, чтобы фотон обладал целым спином, равным 0 или 1, поскольку спины электрона и позитрона равны ½ . Ряд экспериментов и теоретических выкладок привели к выводу, что спин фотона действительно равен 1 (в единицах ). При столкновении позитрона с электроном происходит их аннигиляция: (263.3) в ее процессе электронно-позитронная пара превращается в два g-кванта, причем энергия пары переходит в энергию фотонов. Появление в этом процессе двух g-квантов следует из закона сохранения импульса и энергии. Реакция (263.3) подтверждена прямыми экспериментами под руководством российского ученого Л. А. Арцимовича (1909—1973). Процессы (263.2) и (263.3) — процессы возникновения и превращения электронно-позитронных пар — являются примером взаимосвязи различных форм материи: в этих процессах материя в форме вещества превращается в материю в форме электромагнитного поля, и наоборот. Для многих ядер превращение протона в нейтрон, помимо описанного процесса (263.1), происходит посредством электронного захвата, или е-захвата, при котором ядро спонтанно захватывает электрон с одной из внутренних оболочек атома (К, L и т. д.), испуская нейтрино: Необходимость появления нейтрино вытекает из закона сохранения спина. Схема е-захвата: т. е. один из протонов ядра превращается в нейтрон, заряд ядра убывает на единицу и оно смещается влево так же, как и при позитронном распаде. Электронный захват обнаруживается по сопровождающему его характеристическому рентгеновскому излучению, возникающему при заполнении образовавшихся вакансий в электронной оболочке атома (именно так е-захват и был открыт в 1937 г.). При е-захвате, кроме нейтрино, никакие другие частицы не вылетают, т. е. вся энергия распада уносится нейтрино. В этом е-захват (часто его называюттретьим видом b-распада) существенно отличается от b±-распадов, при которых вылетают две частицы, между которыми и распределяется энергия распада. Примером электронного захвата может служить превращение радиоактивного ядра бериллия Ве в стабильное ядро Li: § 264. Открытие нейтрона. Ядерные реакции под действием нейтронов Нейтроны, являясь электрически нейтральными частицами, не испытывают кулоновского отталкивания и поэтому легко проникают в ядра и вызывают разнообразные ядерные превращения. Изучение ядерных реакций под действием нейтронов не только сыграло огромную роль в развитии ядерной физики, но и привело к появлению ядерных реакторов (см. § 267). Краткая история открытия нейтрона такова. Немецкие физики В. Боте (1891—1957) и Г. Беккер в 1930 г., облучая ряд элементов, в частности ядра бериллия, a-частицами, обнаружили возникновение излучения очень большой проникающей способности. Так как сильно проникающими могут быть только нейтральные частицы, то было высказано предположение, что обнаруженное излучение — жесткие g-лучи с энергией примерно 7 МэВ (энергия рассчитана по поглощению). Дальнейшие эксперименты (Ирен и Фредерик Жолио-Кюри, 1931 г.) показали, что обнаруженное излучение, взаимодействуя с водородосодержащими соединениями, например парафином, выбивает протоны с пробегами примерно 26 см. Из расчетов следовало, что для получения протонов с такими пробегами предполагаемые g-кванты должны были обладать фантастической по тем временам энергией 50 МэВ вместо расчетных 7 МэВ! Пытаясь найти объяснение описанным экспериментам, английский физик Д. Чэдвик (1891—1974) предположил (1932), а впоследствии доказал, что новое проникающее излучение представляет собой не g-кванты, а поток тяжелых нейтральных частиц, названных им нейтронами. Таким образом, нейтроны были обнаружены в следующей ядерной реакции: Эта реакция не является единственной, ведущей к выбрасыванию из ядер нейтронов (например, нейтроны возникают в реакциях Li (a, n) B и В (a, п) N). Характер ядерных реакций под действием нейтронов зависят от их скорости (энергии). В зависимости от энергии нейтроны условно делят на две группы:медленные и быстрые. Область энергий медленных нейтронов включает в себя областьультрахолодных (с энергией до 10–7 эВ),очень холодных (10–7 — 10–4 эВ),холодных(10–4 — 10–3 эВ),тепловых (10–3 — 0,5 эВ) ирезонансных (0,5 — 104 эВ) нейтронов. Ко второй группе можно отнестибыстрые (104 — 108 эВ),высокоэнергетичные(108 — 1010 эВ) ирелятивистские (³1010 эВ) нейтроны. Замедлить нейтроны можно пропуская их через какое-либо вещество, содержащее водород (например, парафин, вода). Проходя через такие вещества, быстрые нейтроны испытывают рассеяние на ядрах и замедляются до тех пор, пока их энергия не станет равной, например, энергии теплового движения атомов вещества замедлителя, т. е. равной приблизительно kT. Медленные нейтроны эффективны для возбуждения ядерных реакций, так как они относительно долго находятся вблизи атомного ядра. Благодаря этому вероятность захвата нейтрона ядром становится довольно большой. Однако энергия медленных нейтронов мала, потому они не могут вызывать, например, неупругое рассеяние. Для медленных нейтронов характерны упругое рассеяние на ядрах (реакция типа (п, п)) и радиационный захват (реакция типа (п, g)). Реакция (п, g) приводит к образованию нового изотопа исходного вещества: например Часто в результате (n, g)-реакции образуются искусственные радиоактивные изо-топы, дающие, как правило, b–-распад. Например, в результате реакции образуется радиоактивный изотоп Р, претерпевающий b–-распад с образованием стабильного изотопа серы:
|
|||
|