Хелпикс

Главная

Контакты

Случайная статья





Вопрос 1:. Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные



 Вопрос 1:

Зако́н Куло́на — это закон, описывающий силы взаимодействия между неподвижными точечными электрическими зарядами. Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками,

Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.

Важно отметить, что для того, чтобы закон был верен, необходимы:

  1. Точечность зарядов, то есть расстояние между заряженными телами должно быть много больше их размеров
  2. Их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
  3. Расположение зарядов в вакууме.

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где — сила, с которой заряд 1 действует на заряд 2; — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — ); — коэффициент пропорциональности.

:

где ≈ 8,854187817·10−12 Ф/м — электрическая постоянная.

В однородном изотропном веществе в знаменатель формулы добавляется диэлектрическая проницаемость среды ε.

 

Вопрос 2:

Электрическое поле

По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда – небольшого по величине точечного заряда, который не производит заметного перераспределения исследуемых зарядов.

Для количественного определения электрического поля вводится силовая характеристика напряженность электрического поля.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда:

 

Напряженность электрического поля – векторная физическая величина. Направление вектора Е в каждой точке пространства совпадает с направлением силы, действующей на положительный пробный заряд.

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности:

 

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции.

В соответствии с законом Кулона напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю

 

Это поле называется кулоновским. В кулоновском поле направление вектора Е зависит от знака заряда Q: если Q > 0, то вектор Е направлен по радиусу от заряда, если Q < 0, то вектор Е направлен к заряду.

 

Кулоновское поле точечного заряда Q удобно записать в векторной форме. Для этого нужно провести радиус-вектор r от заряда Q к точке наблюдения. Тогда при Q > 0 вектор E параллелен r, а при Q < 0 вектор E анти параллелен r. Следовательно, можно записать:

 

где r – модуль радиус-вектора r.

Вопрос 3:

Электростатический потенциа́л (см. также кулоновский потенциал) — скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию, которой обладает единичный положительный пробный заряд, помещённый в данную точку поля. 1 В = 1 Дж/Кл

Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:

Напряжённость электростатического поля и потенциал связаны соотношением[1]

или обратно[2]:

Здесь оператор набла, то есть в правой части равенства стоит минус градиент потенциала — вектор с компонентами, равными частным производным от потенциала по соответствующим (прямоугольным) декартовым координатам, взятый с противоположным знаком.

 

 

4 Энергия системы зарядов

 

Найдем сначала выражение для потенциальной энергии системы двух точечных зарядов и , находящихся на расстоянии . Когда заряды удалены друг от друга на бесконечность, они не взаимодействуют. Положим в этом случае их энергию равной нулю. Сблизим заряды на заданное расстояние . При этом мы должны будем совершить работу против электрических сил, которая пойдет на увеличение потенциальной энергии системы. Сближение зарядов можно произвести, приближая к либо к .Работа переноса заряда из бесконечности в точку, удаленную от на

где - потенциал, создаваемый зарядом в той точке, в которую перемещается заряд . Аналогично работа переноса заряда из бесконечности в точку, удаленную от на , равна

где - потенциал, создаваемый зарядом в той точке, в которую перемещается заряд . Значение работ в обоих случаях одинаковы, и каждое из них выражает энергию системы

Для того чтобы в выражение энергии системы оба заряда входили симметрично, запишем его следующим образом:

Эта формула дает энергию системы двух зарядов.

Добавляя к системе Зарядов последовательно и т.д., можно убедиться в том, что в случае n зарядов потенциальная энергия системы равна

(16.1)

где - потенциал, создаваемый в той точке, где находится , всеми зарядами, кроме i-го.

5 Связь между

 

Итак, электростатическое поле можно описать либо с помощью векторной величины , либо с помощью скалярной величины φ. Очевидно, что между этими величинами должна существовать определенная связь. Найдем ее:

Изобразим перемещение заряда q по произвольному пути l (Рис. 3.1) в электростатическом поле .

Работу, совершенную силами электростатического поля на бесконечно малом отрезке dl, можно найти так:

  (3.4.1)  

где Elпроекция на ; dl– произвольное направление перемещения заряда.

С другой стороны, как мы показали, эта работа, если она совершена электростатическим полем, равна убыли потенциальной энергии заряда, перемещенного на расстоянии dl:

,

отсюда

  (3.4.2)  

Для ориентации dl (направление перемещения) в пространстве, надо знать проекции на оси координат:

  (3.4.3)  

По определению градиента сумма первых производных от какой-либо функции по координатам есть градиент этой функции, то есть

вектор, показывающий направление наибыстрейшего увеличения функции.

Тогда коротко связь между и φ записывается так:

 

6 Поток вектора

В современной физике потоком вектора а называют скалярную физическую величину

Φа = ∫∫S а dS = ∫∫S (а n) dS , ( 1 )

где S – площадь произвольно расположенной поверхности;
а – произвольный вектор, начало которого лежит на поверхности S;
dS = n dS – псевдовектор, поставленный в соответствие ориентированной элементарной площадке (И.Бронштейн и К.Семендяев, 1968);
n – орт нормали к элементарной площадке dS.

Чаще всего приводится первая запись уравнения (1), но это не меняет того, что физическая величина Φа в уравнении (1) является скаляром. Псевдовектор элементарной площадки dS, является чистой математической абстракцией. В статье, посвященной физическому содержанию векторной величины, показано, что согласно принципу причинности произвольную векторную величину а следует рассматривать как локализациюполного вектора, распределенного по площади и приложенного в точке с заданными координатами.

Когда в математике и физике сначала вводят понятие частной величины (локального вектора), а затем – понятие общей величины, называемой потоком вектора, то мы имеем дело с не всегда оправданным применением индуктивного метода (от частного к общему). А дедуктивный метод (от общего к частному) предполагает сначала введение полной величины (неудачно названной в данном случае потоком вектора), а затем уже – введение локализованной величины (самого вектора).

Термин "поток вектора" является, по нашему мнению, отражением неаккуратности в присвоении названий физическим величинам и должен быть заменен другим термином. Процитируем популярный справочник по математике И.Бронштейна и К.Семендяева (1986): "Каждой ориентированной плоской площадке Σ можно поставить в соответствие вектор S, имеющий направление n и модуль, равный ее площади S ".

Приведем пример. На основании приведенной цитаты может показаться, что такая векторная величина, как перемещение объема ΔV, является скаляром, так как определяется скалярным произведением ΔV = хdS. Но приводимое в учебниках по физике указание на то, что "поток вектора скорости" является скалярной величиной, противоречит принципу причинности. Ведь перемещение x центра перемещаемого объема dVявляется следствием перемещения этого объёма, а не его причиной. При соблюдении принципа причинности следует записать выражение x = dV/dS. И тогда элементарная площадка dS остается скаляром, чем она, по сути дела, и является. А понятие о псевдовекторе площадки dS остается математической абстракцией, не имеющей физического содержания.

Почему же в теории физического поля применяются скалярные потоки вектора? Дело в том, что при анализе физического поля не применяются понятия о проточных системах и перемещаемых координатах состояния, и применение скалярных потоков вектора себя оправдывает теоретически, так как в этом случае оно не противоречит принципу причинности. Но и тут следует заметить, что вместо записи dS, как это принято в векторном анализе, предпочтительнее указывать запись ndS.

В частности, поток вектора магнитной индукции B (магнитный поток) Φm = ∫∫S BndS является величиной скалярной, ведь в магнитных цепях никакие энергоносители не перемещаются. Это следует объяснять при преподавании, чтобы не казалось, будто в магнитных цепях что-то движется. А такие мысли могут появиться по причине того, что в термине "магнитный поток" присутствует слово "поток".

 

. Поток вектора электрического смещения через любую замкнутую поверхность, окружающую некоторый объем, равен алгебраической сумме свободных зарядов, находящихся внутри этой поверхности

(15.11)

Вектор – это такая характеристика поля, которая не зависит от диэлектрических свойств среды.

2. Так как , то теорему Гаусса для однородной и изотропной среды можно записать:

(15.12)

Вектор – это характеристика поля, которая зависит от диэлектрических свойств среды.

3. Поток вектора через любую замкнутую поверхность создается не только суммой свободных зарядов, но и суммой связанных зарядов

. (15.13)

Теорему Гаусса можно использовать для нахождения напряженности или электрического смещения в какой-либо точке поля, если через эту точку можно провести замкнутую поверхность таким образом, что все ее точки будут в симметричных (одинаковых условиях по отношению к заряду, находящемуся внутри замкнутой поверхности).

Такой поверхностью являются обычно сфера (если заряд точечный), или боковая поверхность цилиндра (если заряд линейный).

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.