|
||||||
Происхождение и эволюция звёзд. Происхождение планет. Жизнь и разум во вселенной .»
Лекция 17 «Происхождение и эволюция звёзд. Происхождение планет. Жизнь и разум во вселенной .» Цель :Изучить возраст вселенной.Возраст Земли и других планет солнечной системы.Изучить гипотезы жизни и разума во Вселенной Небесные тела находятся в непрерывном движении и изменении. Десятки тысяч лет назад небо Земли украшали фигуры других созвездий, миллиарды лет назад вообще еще не было Земли, Луны, планет, Солнца, многих звезд и галактик. Когда и как именно они произошли, наука стремится выяснить, изучая небесные тела и их системы. Раздел астрономии, занимающийся проблемами происхождения и эволюции небесных тел, называется космогонией. Современные научные космогонические гипотезы — результат физического, математического и философского обобщения многочисленных наблюдательных данных. В космогонических гипотезах, присущих данной эпохе, в значительной мере находит свое отражение общий уровень развития естествознания. Дальнейшее развитие науки, обязательно включающее в себя астрономические наблюдения, подтверждает или опровергает эти гипотезы. Подтверждаются те гипотезы, которые не только могут объяснить известные из наблюдений факты, но и предсказать новые открытия. Возраст галактик и звезд.Возраст Метагалактики оценивается 1,5 • 1010 лет. По-видимому, близок к нему и возраст галактик, которые сформировались на одной из начальных стадий расширения Метагалактики. Каждая звезда тоже образовалась в какой-то определенный момент времени. От него и отсчитывается ее возраст. Звезды образовались не одновременно, а следовательно, должны встречаться «старые» и «молодые» звезды. Возраст звезд определяется различными методами. Естественно предположить, что звезды, входящие в скопление, возникли одновременно и имеют одинаковый возраст. Поэтому один из методов определения возраста звезд основан на определении возраста звездных скоплений. Самые «старые» звезды должны входить в длительно существующие скопления. Это шаровые скопления, возраст которых порядка 1010 лет. В шаровых скоплениях много красных и желтых звезд. (Их возраст достигает нескольких миллиардов лет.) Рассеянные скопления «моложе». Возраст белых и голубых сверхгигантов, которые есть в этих скоплениях, — порядка нескольких миллионов лет. Эти самые общие соображения подтверждаются данными спектральных наблюдений. В частности, в составе звезд, входящих в шаровые скопления, во много раз меньше элементов тяжелее гелия, чем, например, у Солнца. Теория эволюции звезд объясняет указанное явление тем, что «старые» звезды образовались из вещества, не содержащего тяжелых элементов (такие элементы просто еще не существовали, когда формировались самые "старые" звезды!). Происхождение и эволюция звезд.Звезды возникали в ходе эволюции галактик. Большинство астрономов считают, что это происходило в результате сгущения (конденсации) облаков диффузной материи, которые постепенно формировались внутри галактик. Одна из исходных предпосылок такой гипотезы состоит в том, что, как показывают наблюдения, «молодые» звезды всегда тесно связаны с газом и пылью. Эти звезды и диффузная материя концентрируются в спиральных ветвях галактик. Местами наиболее интенсивного звездообразования считаются массы холодного межзвездного вещества, которые называются газово-пылевыми комплексами. Наиболее изученный газово-пылевой комплекс нашей Галактики находится в созвездии Ориона, он включает в себя туманность в Орионе, более плотные газово-пылевые облака и другие объекты. Представим себе холодное газово-пылевое облако. Силы тяготения сжимают его, оно принимает шарообразную форму. При сжатии будут возрастать плотность и температура облака. Возникнет будущая, рождающаяся звезда (протозвезда). Температура ее поверхности пока еще мала, но протозвезда уже излучает в инфракрасном диапазоне, а поэтому рождающиеся звезды можно попытаться обнаружить среди довольно многочисленных источников инфракрасного излучения. Поиски протозвезд (и протогалактик!) сейчас успешно ведутся на многих обсерваториях. Одно из основных отличий протозвезды от звезды заключается в том, что в протозвезде еще не происходят термоядерные реакции, т. е. в ней нет еще основного источника энергии обычных звезд. Термоядерные реакции начинаются, когда в процессе сжатия протозвезды температура в ее недрах станет порядка 107 К. С этого времени стадия сжатия звезды прекращается: сила внутреннего давления газа теперь уже может уравновесить силу тяготения внешних частей звезды. Стадия сжатия звезд, массы которых значительно больше массы Солнца, продолжается всего лишь сотни тысяч лет, а звезды, массы которых меньше солнечной, сжимаются сотни миллионов лет. Чем больше масса звезды, тем при большей температуре достигается равновесие. Поэтому, как вы знаете, у массивных звезд самые большие светимости. Стадию сжатия сменяет стационарная стадия, сопровождающаяся постепенным «выгоранием» водорода. В стационарной стадии звезда проводит большую часть своей жизни. Именно в этой стадии эволюции находятся звезды, которые располагаются на главной последовательности диаграммы «спектр — светимость». Таких звезд, как мы знаем, больше всего. Время пребывания звезды на главной последовательности пропорционально массе звезды, так как от этого зависит запас ядерного горючего, и обратно пропорционально светимости, которая определяет темп расхода ядерного горючего. А поскольку светимость звезды пропорциональна примерно четвертой степени ее массы, то массивные звезды, массы которых в несколько раз больше массы Солнца, эволюционируют быстрее. Они находятся в стационарной стадии только несколько миллионов лет, а звезды, подобные Солнцу, — миллиарды лет. Когда весь водород в центральной области звезды превратится в гелий, внутри звезды образуется гелиевое ядро. Теперь уже водород будет превращаться в гелий не в центре звезды, а в слое, прилегающем к очень горячему гелиевому ядру. Пока внутри гелиевого ядра нет источников энергии, оно будет постепенно сжиматься и при этом еще более разогреваться. Когда температура внутри звезды превысит l,5•107 K, гелий начнет превращаться в углерод (с последующим образованием все более тяжелых химических элементов). Как показывают расчеты, светимость и размеры звезд будут возрастать. В результате обычная звезда постепенно превратится в красного гиганта или сверхгиганта. Такие звезды, как вы знаете, занимают особое положение на диаграмме «спектр — светимость». Многие звезды, по-видимому, не сразу становятся стационарными гигантами, а некоторое время пульсируют, как бы проходя в своем развитии стадию цефеид. Заключительный этап жизни звезды, как и вся ее эволюция, решающим образом зависит от массы звезды. Внешние слои звезд, подобных нашему Солнцу (но с массами, не большими 1,2 массы Солнца), постепенно расширяются и в конце концов совсем покидают ядро звезды. На месте гиганта остается маленький и горячий белый карлик. Белых карликов в мире звезд много. Это значит, что, по-видимому, многие звезды превращаются в белых карликов, которые затем постепенно остывают, становясь «потухшими звездами». Иная судьба у более массивных звезд. Если масса звезды примерно вдвое превышает массу Солнца, то такие звезды на последних этапах своей эволюции теряют устойчивость. В частности, они могут взорваться как сверхновые, обогащая межзвездную среду тяжелыми химическими элементами (которые образовались внутри звезды и во время ее взрыва), а затем катастрофически сжаться до размеров шаров радиусом в несколько километров, т. е. превратиться в нейтронные звезды. Внутри звезд в ходе термоядерных реакций может образоваться до 30 химических элементов, а во время взрыва сверхновых — остальные элементы периодической системы. Из обогащенной тяжелыми элементами межзвездной среды образуются звезды следующих поколений. Вот почему о возрасте звезд можно судить по их химическому составу, определяемому методом спектрального анализа.
А какова судьба звезды, масса которой более чем вдвое превышаетмассу Солнца? Такая звезда, потеряв равновесие и начав сжиматься, либо превратится в нейтронную звезду, либо вообще не сможет достигнуть устойчивого состояния. В процессе неограниченного сжатия (коллапса) она, вероятно, способна превратиться в удивительный объект — черную дыру. Такое странное название связано с тем, что могучее поле тяготения сжавшейся звезды не выпускает за ее пределы никакое излучение (свет, рентгеновские лучи и т. д.). Поэтому черную дыру нельзя увидеть ни в каком диапазоне электромагнитных волн. Но, как показали наши ученые, есть возможность обнаружить черные дыры. Дело в том, что черные дыры должны оказывать гравитационное воздействие на окружающие их тела. Не исключено, например, что черная дыра может быть в составе двойной звезды. Газ с поверхности обычной звезды будет непрерывно падать на черную дыру, образуя вокруг нее диск (рис 106). Температура газа в этом вращающемся диске может достичь 107 К. При температуре в миллионы Кельвинов газ будет излучать в рентгеновском диапазоне (см. формулу (29)). Поэтому с точки зрения поиска черных дыр интересны компактные источники рентгеновского излучения. Если такой источник обнаружен (с помощью рентгеновских телескопов на ИСЗ) и если он имеет достаточно большую массу (для выяснения этого в конечном счете используются формулы (48) и (50)), то этот источник, может оказаться нейтронной звездой или даже черной дырой. Астрономы считают, что несколько черных дыр в тесных двойных системах уже обнаружено, также открыты сверхмассивные черные дыры и в некоторых галактиках, включая нашу Галактику(!). Дальнейшее развитие науки покажет, какие из сегодняшних представлений о происхождении галактик и звезд окажутся правильными. Но уже теперь нет сомнения в том, что звезды, во-первых, подчиняясь законам природы, рождаются, живут и умирают, а не есть однажды созданные и вечно неизменные объекты Вселенной, и, во-вторых, звезды рождаются группами, причем процесс звездообразования продолжается в настоящее время. Возраст Земли и других тел Солнечной системы.Определение возраста земной коры основано на исследовании содержания в ней радиоактивных элементов (урана, тория и др.), а также радиоактивных изотопов таких элементов, как калий, аргон и др. Как известно из физики, радиоактивные элементы непрерывно распадаются, причем процесс распада совершенно не зависит от внешних воздействий. При радиоактивном распаде образуются изотопы соседних элементов периодической системы Менделеева. Эти изотопы сами нередко оказываются радиоактивными, а значит, и они распадаются. Распад заканчивается, когда атомы радиоактивных элементов превращаются в нерадиоактивные атомы химических элементов и их изотопы. Например, распад урана (238U) завершается образованием нерадиоактивного изотопа свинца (206РЬ). Промежуток времени (Т), по истечении которого остается половина начального количества радиоактивных атомов, характеризует скорость распада и называется периодом полураспада. Для определения возраста земной коры используются медленно распадающиеся изотопы, например 238U (Т≈4,5•109 лет), радиоактивный изотоп калия 40К (Т≈1,3•109лет) и др. Чтобы определить возраст земной коры, сравнивают содержание радиоактивных элементов и продуктов их распада в многочисленных пробах, взятых для анализа. Такое сравнение показывает, что возраст земной коры около 4,5 млрд. лет. Примерно таков же возраст Земли как оформившейся планеты. К 3,5—4,5 млрд. лет близок также возраст лунных пород и метеоритов. Солнце, конечно, не может быть моложе Земли и Луны. Скорее всего возраст Солнца (желтой звезды, находящейся в средней части главной последовательности диаграммы «спектр — светимость») — 5 млрд. лет. Сопоставление возраста Солнечной системы с возрастом Метагалактики (будем считать его равным 15 млрд. лет) показывает, что Солнце нельзя отнести к звездам «первого поколения». Скорее всего, в состав его и планет вошел газ, дважды побывавший в недрах более старых звезд. На ранних стадиях расширения Метагалактики, как вы уже знаете, вообще не было тяжелых химических элементов, которые впоследствии стали центрами конденсации твердых частиц, необходимых для формирования планет. Основные закономерности в Солнечной системе. Космогоническая гипотеза о происхождении планет должна объяснить следующие основные закономерности, наблюдаемые в Солнечной системе: а) углы наклонения плоскостей орбит планет к плоскости эклиптики не превышают нескольких градусов (у Плутона 17°), причем плоскость эклиптики почти совпадает с плоскостью экватора Солнца; б) эксцентриситеты орбит планет очень малы; в) средние расстояния планет от Солнца подчиняются определенному закону (25); г) планеты движутся вокруг Солнца в том же направлении, в каком Солнце вращается вокруг своей оси (в том же направлении вокруг планет обращается большинство спутников); д) у большинства планет (за исключением Венеры и Урана) направление вращения вокруг оси совпадает с направлением обращения вокруг Солнца; е) на долю планет приходится 98% момента количества движения всей Солнечной системы; Солнце обладает лишь 2% момента количества движения; ж) почти 99,9% массы вещества Солнечной системы приходится на долю Солнца; з) по своим физическим характеристикам планеты резко делятся на две группы: планеты-гиганты и планеты земной группы. Первые космогонические гипотезы. Эти гипотезы появились значительно раньше, чем стали известны многие важные закономерности Солнечной системы. Значение первых космогонических гипотез состояло прежде всего в том, что они пытались объяснить происхождение небесных тел как результат естественного процесса, а не одновременного акта божественного творения. Кроме этого, некоторые ранние гипотезы содержали правильные идеи о происхождении небесных тел. Такой, например, оказалась гипотеза, предложенная немецким философом И.Кантом в середине XVIII в. Кант высказал догадку о том, что Солнечная система образовалась из облака пыли. Подробнее картина образования Солнечной системы вырисовывалась в гипотезе, предложенной в конце XVIII в. французским ученым П. Лапласом. Лаплас рассматривал большую, медленно вращающуюся туманность, состоящую из разреженного горячего газа. При сжатии туманности скорость ее вращения возрастала, туманность сплющивалась. Из ее центральной части образовалось Солнце. По мере сжатия первичного Солнца угловая скорость его вращения вокруг оси увеличивалась (в силу закона сохранения момента количества движения) и в плоскости экватора Солнца стали отделяться газовые кольца. Из концентрической системы этих колец возникли планеты. Картина получалась настолько наглядной, что очень долгое время гипотеза Лапласа была самой популярной. Однако в XX в. от гипотезы Лапласа пришлось отказаться, так как выяснилось, что она не может объяснить, например, распределение момента количества движения в Солнечной системе. Современные представления о происхождении планет. На первый взгляд может показаться, что по сравнению с грандиозными проблемами космологии и звездной космогонии проблема происхождения Солнечной системы не очень трудна. На самом деле это не так. Проблема происхождения планет очень сложная и далеко еще не решенная проблема, во многом зависящая от развития не только астрономии, но и многих других наук (прежде всего наук о Земле). Ведь пока можно исследовать только единственную планетную систему, окружающую наше Солнце. Мы еще мало знаем о более молодых и более старых планетных системах, недавно открытых у других звезд. Чтобы правильно объяснить происхождение планет, необходимо также знать, как образовались Солнце и другие звезды, потому что планетные системы возникают вокруг звезд в результате закономерных процессов развития материи. И все-таки, несмотря на трудности, ученые убеждены в том, что правильное объяснение будет найдено. Знать, как произошла наша планета, очень важно для дальнейшего развития геофизики, геохимии, геологии и других наук о Земле. Проблемами планетной космогонии в настоящее время занимаются ученые разных стран. В формирование современной планетной космогонии значительный вклад внесли отечественные ученые. Так, например, на протяжении полувека проблемами планетной космогонии занимался академик В. Г. Фесенков (1889—1972), всегда подчеркивавший, что должна существовать тесная связь между процессом формирования Солнца и процессом формирования планет. В начале 40-х гг. с космогонической гипотезой выступил академик О.Ю. Шмидт (1891—1956).
Наиболее важные выводы планетной космогонии сводятся к следующему: а) Планеты сформировались в результате объединения твердых (холодных) тел и частиц, входивших в состав туманности, которая когда-то окружала Солнце (рис. 107). Эту туманность часто называют «допланетным» или «протопланетным» облаком. Считается, что Солнце и протопланетное облако сформировались одновременно в едином процессе, хотя пока неясно, как произошло отделение части туманности, из которой возникли планеты, от «протосолнца». б) Формирование планет происходило под воздействием различных физических процессов. Следствием механических процессов стало сжатие (уплощение) вращающейся туманности, ее удаление от «протосолнца», столкновение частиц, их укрупнение и т. д. Изменялась температура вещества туманности и состояние, в котором находилось вещество. Замедление вращения будущего Солнца могло быть обусловлено магнитным полем, связывающим туманность с «протосолнцем». Взаимодействие солнечного излучения с веществом протопланетного облака привело к тому, что наиболее легкие и многочисленные частицы оказались вдали от Солнца (там, где сейчас планеты-гиганты). Теория, учитывающая все эти процессы, позволяет объяснить многие закономерности в Солнечной системе. в) Спутники планет (а значит, и наша Луна) возникли, по-видимому, из роя частиц, окружающих планеты, т. е. в конечном итоге тоже из вещества протопланетной туманности. Главный пояс астероидов возник там, где притяжение Юпитера препятствовало формированию крупной планеты. Таким образом, основная идея современной планетной космогонии сводится к тому, что планеты и их спутники образовались из холодных твердых тел и частиц. Земля как планета в основном сформировалась за время порядка 100 млн. лет и вначале тоже была холодной. Последующий разогрев Земли происходил в результате ударов крупных тел (размером с астероиды), гравитационного сжатия, распада радиоактивных элементов и некоторых других физических процессов. Постепенно в процессе гравитационной дифференциации вещества (т. е. в процессе разделения вещества, состоящего из тяжелых и легких химических элементов) в центре Земли сосредоточивались тяжелые химические элементы (железо, никель и др.), из которых образовалось ядро нашей планеты. Из более легких химических элементов и их соединений возникла мантия Земли. Кремний и другие химические элементы стали основой формирования континентов, а самые легкие химические соединения образовали океаны и атмосферу Земли. В земной атмосфере первоначально было много водорода, гелия и таких водородсодержащих соединений, как метан, аммиак, водяной пар. Со временем водород и гелий улетучились, а с появлением растений, способных «выдыхать» кислород, земная атмосфера начала обогащаться кислородом, наличие которого представляет одно из необходимых условий существования животного мира. Уже открыты газопылевые диски, и даже планеты у десятков других звезд. Это поможет развитию планетной космогонии. Революционными вехами на пути развития астрономии были: обоснование идеи о шарообразности Земли, открытие Коперником гелиоцентрической системы мира, изобретение телескопа, открытие основных законов небесной механики, применение в астрономии спектрального анализа и фотографии, изучение структуры нашей Галактики, открытие Метагалактики и ее расширения, начало радиоастрономических исследований и, наконец, начало космической эры и эпохи непосредственных астрономических экспериментов в космическом пространстве. Благодаря этим открытиям постепенно вырисовывалась величественная картина мироздания, по сравнению с которой наивными сказками кажутся теперь старинные легенды о плоской Земле, неподвижно покоящейся в центре мира, и о небесной тверди с воткнутыми в нее серебряными звездами-булавками. В наши дни астрономия находится на переднем крае современного естествознания и развивается необычайно быстрыми темпами. Астрономическая картина мира — это картина эволюционирующей Вселенной. Современная астрономия не только открыла грандиозный мир галактик, но и обнаружила явления (расширение Метагалактики, космическая распространенность химических элементов, реликтовое излучение), свидетельствующие о том, что Вселенная непрерывно эволюционирует. Эволюция Вселенной включает в себя эволюцию вещества и эволюцию структуры. Эволюция вещества сопровождалась понижением его температуры, плотности, образованием химических элементов. С эволюцией структуры связано возникновение сверхскоплений галактик, обособление и формирование звезд и галактик, образование планет и их спутников. С течением времени менялась и роль физических взаимодействий в процессе эволюции Вселенной. В мире планет, звезд и галактик основную роль играет гравитационное взаимодействие: им обусловлено движение и в значительной степени эволюция небесных тел и их систем. Но, кроме гравитационного, существуют еще три других вида взаимодействий — слабое, с которым связан, например, радиоактивный распад, сильное, с которым связан, например, синтез ядер атомов, и электромагнитное, с которым связано, например, взаимодействие квантов электромагнитного излучения с электронами и другими заряженными частицами. В «горячей Вселенной», представлявшей своеобразную «лабораторию высоких энергий», при фантастических температурах (1028 — 1032 К!) различные виды физических взаимодействий ныне могут быть представлены единым взаимодействием. Исследование такой возможности представляет огромный интерес для физики и космологии, потому что свойства Вселенной оказываются неразрывно связаны со свойствами микромира. При температуре 1013 К и плотности 1020 кг/м3 (такими параметрами характеризовалась плазма через 10-6 с после «начала» расширения Метагалактики) вещество обладало свойствами, которые пока еще мало изучены. Еще меньше известно об особенностях процессов, происходивших еще раньше (при t = 10-35 с температура в Метагалактике была Т ~1028 К). Ученые предполагают, что следствием именно этих процессов стали такие фундаментальные свойства Метагалактики, как, например, ее расширение, или тот факт, что в Метагалактике небесные тела состоят из вещества, а не из антивещества. Таким образом, Вселенная предстает перед нами как бесконечно развертывающийся во времени и пространстве процесс эволюции материи. В этом процессе взаимосвязанными оказываются самые разнообразные объекты и явления микромира и мегамира. На определенном этапе эволюции материи при появлении подходящих условий во Вселенной возникает жизнь. Ее возникновение, существование и развитие также обусловлены рядом фундаментальных свойств Вселенной, выражающихся, например, в константах, характеризующих гравитационное, электромагнитное, слабое и сильное взаимодействия. Ученые считают, что при значениях этих констант, например гравитационной постоянной, отличающихся от наблюдаемых, жизнь во Вселенной существовать просто бы не могла. Ясно, что жизнь не могла возникнуть и на ранних стадиях расширения Метагалактики. Но именно в первые минуты расширения при температурах более 109 К вещество уже имело «стандартный химический состав» (около 75% ядер атомов водорода и 25% ядер гелия). Если бы состав вещества был иным, то трудно сказать, какой стала бы дальнейшая химическая эволюция вещества Метагалактики. Вы знаете, что образовавшиеся в поздних стадиях расширения Метагалактики звезды оказались не только источниками энергии, но и теми объектами Вселенной, в недрах которых синтезировались необходимые для возникновения жизни химические элементы. Для существования жизни небезразлично и то, что Метагалактика расширяется. Если бы по каким-либо причинам несколько миллиардов лет назад началось сжатие Метагалактики, то постепенное повышение температуры превысило бы значение, при котором возможно существование жизни. Уже из приведенных примеров следует, что человек может величать себя не только сыном Солнца (по образному выражению К. А. Тимирязева), но и сыном Вселенной. Проблема внеземных цивилизаций.Мы живем на небольшой планете, движущейся вокруг одной из бесчисленного множества звезд Вселенной. И поэтому трудно примириться с мыслью о том, что мы одиноки в беспредельной Вселенной. Большинство современных астрономов и философов считают, что жизнь — распространенное явление во Вселенной и существует множество миров, на которых обитают цивилизации. Уровень развития некоторых внеземных цивилизаций может быть неизмеримо выше уровня развития земной цивилизации. Именно с такими цивилизациями землянам особенно интересно установить контакт. Подобная точка зрения основывается на следующих фактах и предположениях: а) В Метагалактике есть огромное число звезд, похожих на наше Солнце (хотя «двойников» Солнца отыскать трудно). Возможно, что и метагалактик множество. б) Планеты, согласно современным представлениям, существуют не только у нашего Солнца, но и у других звезд (возможно, что таких звезд много). в) Планетные системы есть, возможно, даже у некоторых из немногих ближайших к Солнцу звезд. г) Жизнь на Земле, как вы знаете из курса биологии, появилась в результате сложной и длительной эволюции не живой материи. При соответствующих условиях жизнь могла возникнуть и на планетах других звезд. Молекулярные соединения, необходимые для начальной стадии эволюции неживой материи, достаточно распространены во Вселенной и открыты даже в межзвездной среде. д) Не исключается возможность существования небелковых форм жизни, принципиально отличных от тех, которые распространены на Земле. Не все ученые столь оптимистически относятся к проблеме внеземных цивилизаций. Сторонники противоположной точки зрения считают, что жизнь, и особенно разумная жизнь, — исключительно редкое, а может быть, и уникальное явление во Вселенной. При этом обращается внимание на следующее: а) Вероятность того, что в процессе эволюции неживой материи возникает жизнь (а тем более разумная жизнь!), очень мала, так как в ходе такой эволюции появляется огромное число препятствий на пути образования и последующего усложнения живых клеток. б) Ничего конкретного о небелковых формах жизни науке не известно. в) В Солнечной системе высокоорганизованные формы жизни есть только на Земле. На Луне и, возможно, на Марсе, вопреки ожиданиям, не оказалось даже микроорганизмов, обладающих большой приспособляемостью к условиям обитания. Ушли в прошлое представления о каких-либо высших формах жизни на Венере и Марсе. г) Нет ни одного неопровержимого доказательства, что Землю когда-либо посещали посланцы других миров. д) Радиопоиски сигналов внеземных цивилизаций пока не увенчались успехом. е) До сих пор не обнаружено никаких признаков инженерной (или какой-либо другой) деятельности внеземных цивилизаций, а это очень странно, если полагать, что внеземных цивилизаций много и некоторые из них вполне могли достигнуть высокого уровня развития. Нередко с деятельностью внеземных цивилизаций пытаются отождествить некоторые неопознанные летающие объекты (НЛО). Появление каких-то странных объектов на небе люди наблюдали со времен египетских фараонов, но первые официальные наблюдения НЛО обычно связывают с сообщениями о появлении НЛО в конце 50-х гг. XX в. В США и в ряде других стран, включая нашу, стали активно работать различные группы и комиссии, которые занимались сбором информации и исследованием феномена, иногда именуемого АЯ (аномальные явления). Накоплены многие тысячи наблюдений НЛО. Исследованиями НЛО занимались даже военные. Эти объекты, по свидетельствам очевидцев, перемещаются по изломанным траекториям, быстро изменяют скорость движения, оказывают влияние на двигатели автомобилей, электроприборы и другие технические устройства. Большинство аномальных явлений оказались связанными с запусками ИСЗ и различными техническими экспериментами в атмосфере, астрономическими явлениями (яркие планеты), естественными атмосферными эффектами (необычное свечение неба, редкие формы облаков и др.). Неразгаданные НЛО вызывают оживленные споры и самые экзотические гипотезы. Например, допускают, что некоторые НЛО сходны с миражами, которые могут одновременно видеть множество людей. Выдвинута гипотеза и о существовании в космосе и на Земле «параллельных миров», с которыми при определенных условиях якобы способна контактировать психика людей (что и происходит во время появления НЛО). Наконец, есть сторонники гипотезы о том, что НЛО связаны с деятельностью внеземных цивилизаций (и даже появлением на Земле различных типов «гуманоидов»). Еще раз подчеркнем, что до сих пор внеземные цивилизации относятся к числу гипотетических объектов, поиск которых представляет большой интерес. Причем ученые не только ищут внеземные цивилизации, но и в теоретическом плане исследуют их возможные модели. Несомненно, что внеземные цивилизации и НЛО — это не одно и то же. Более того, НЛО вообще не имеют никакого отношения к внеземным цивилизациям, а настоящие внеземные цивилизации (если они существуют!) могут проявлять себя и не в виде НЛО. Таким образом, проблема внеземных цивилизаций на самом деле сложнее, чем может показаться с первого взгляда. Можно спорить и приводить новые доводы в пользу или против реальности внеземных цивилизаций, но лишь дальнейшие наблюдения и эксперименты позволят выяснить, существуют ли где-нибудь обитаемые миры или мы одиноки, по крайней мере, в пределах нашей Галактики. Поэтому ученые с интересом ожидают результатов новых экспериментов по «прослушиванию» Вселенной с помощью нескольких радиотелескопов, принимающих сигналы в большом диапазоне частот.
Задание1 Создать презентацию на тему «Эволюция и происхождение звезд» 2Записать основные проблемы неземных цивилизаций 3 ЗаписатьПервые космогонические гипотезы 4Какие были установленыосновные закономерности, наблюдаемые в Солнечной системе?
|
||||||
|