Хелпикс

Главная

Контакты

Случайная статья





Таким образом, «зелёный пояс» Земли и карбонатная система океана поддерживают относительно постоянное содержание СО2 в атмосфере.



Таким образом, «зелёный пояс» Земли и карбонатная система океана поддерживают относительно постоянное содержание СО2 в атмосфере.

Полагают, что до наступления индустриальной эры потоки углерода между атмосферой, материками и океанами были сбалансированы.

Влияние человека на круговорот углеродапроявилось в том, что с развитием индустрии и сельского хозяйства поступление СО2 в атмосферу стало расти за счёт антропогенных источников.

Основная масса углерода находится в земной коре в связанном состоянии. Важнейшие минералы углерода – карбонаты, количество углерода в них оценивается в 9,6·1015 т. Разведанные запасы горючих ископаемых (угли, нефть, битумы, торф, сланцы, газы) содержат около 1·1013 т углерода.

Однако в настоящее время человек интенсивно замыкает на себя кругово­рот веществ, в том числе и углерода:

1. Суммарная биомасса всех домашних животных уже превышает биомассу всех диких наземных животных.

2. Пло­щади культурных растений приближаются к площади естественных био­геоценозов, многие культурные растения экосистемы по своей продук­тивности значительно превосходят природные.

3. Поступление диоксида углерода в атмосферу в ре­зультате сжигания энергоносителей ведет к глобальному нарушению теплового баланса, «парниковому эффекту». За последнее столетие содержа­ние СО2 увеличилось на 10%, за 33 года содержание СО2 возросло на 25% от первоначальной величины. По прогнозам, к середине XXI века содержание СО2 в атмосфере удво­ится.

Главная причина увеличения содержания СО2 в атмосфере – это сжигание горючих ископаемых, однако свой вклад вносят и транспорт, и уничтожение лесов.

5.4. Круговорот азота

Воздух по объёму почти на 80% состоит из молекулярного азота N2 и представляет собой крупнейший резервуар этого элемента. Биогеохимический круговорот азота не менее сложен, чем углерода и кислорода, и охватывает все области биосферы. Поглощение его растениями ограничено, так как они усваивают азот только в форме соединения его с водородом и кислородом. Редуценты постепенно разлагают белковые вещества отмерших организмов и превращают их в аммонийные соединения, нитраты и нитриты. Часть нитратов попадает в процессе круговорота в подземные воды и загрязняет их, а также азот в виде нитратов и нитритов усваивается растениями и может передаваться по пищевым (трофическим) цепям. Биогеохимические циклы фосфора и серы, важнейших биогенных элементов, значительно менее совершенны, так как находятся в «недоступном» фонде.

Для круговорота азота в элементарной наземной экосистеме характерны три основные «экологические проблемы»:

1) огромные запасы атмосферного азота (N2) непосредственно не могут использоваться высшими растениями - высшие растения усваивают азот в нитратной (NО3-) или аммо­нийной (NH4+) форме;

2) неорганические соединения азота обладают высокой растворимостью, слабо удержи­ваются почвой и легко вымываются за пределы почвенного профиля;

3) материнские (почвообразующие) породы практически не содержат азота.

 

Поступление азота в атмосферупроисходит:

1) в процессе денитрификации, т.е. биохимического восстановления оксидов азота до молекулярного газа N2;

2) с вулканическими газами и

3) с «индустриальными вулканами» (дымом, выхлопными газами).

В водоёмы соединения азота поступают: с поверхностным и дренажным стоком с городских и сельских территорий; с подземными водами; с городскими и промышленными стоками; со сточными водами сельскохозяйственных производств.

Поглощение азота из воздухапроисходит:

1) в процессе азотфиксации благодаря деятельности азотфиксирующих бактерий и многих водорослей (прежде всего сине-зелёных);

2) в результате естественных физических процессов фиксации азота в атмосфере (электрические разряды при грозе и др.) и

3) в процессе промышленного синтеза NH3.

Минеральные соединения азота (NH4+, NO2-, NO3-) потребляются растениями при фотосинтезе. Животные, поедая растения, используют азот для построения белков протоплазмы, превращая его в органические формы.

Таким образом основу круговорота азота в экосистеме составляют четыре типа процессов: азотфиксация, аммонификация, нитрификация и денитрификация.
1. Азотфиксация

Молекулярный азот атмосферного воздуха (N2) может быть «зафиксирован», связан с другими химическими элементами и поступать в экосистему уже в доступной форме путем так называемой азотфиксации. Различают абиотическую и биотическую (биоло­гическую) азотфиксацию.

Азотфиксация биологическая - усвоение молекулярного азота воздуха (N2) азотфиксирующими бактериями с образованием соединений азота, доступных для использования другими организмами.

Азотфиксация осуществляется как свободноживущими азотфиксирующими бактериями - азотобактером, цианобактериями и др. (несимбиотическая азотфиксация), так и симбиотическимы азотфиксаторами, живу­щими в симбиозе с высшими растениями (например, клубеньковыми бактериями). Происходит с участием фермента нитрогеназы, которая катализирует восстановление N2 до NH3 в присутствии АТФ (источника энергии) и восстановителя.

Один из характерных путей попадания связанного азота в экосистему - так называемая абиотическая азотфиксация: при грозах воздух под действием электрических разрядов локально разогревается до огромной температуры (до 2000 °С), что приводит к расщеплению части молекул азота и кислорода на ионизированные атомы, которые могут реагировать друг с другом, об­разуя оксиды азота NOX. Взаимодействуя с водой, оксиды азота образуют соответст­вующие кислоты. Например NO2 образует азотную кислоту по схеме: 3NO2 + H2O → 2HNO2 + NO

 

Таким путем связанный в форме нитратов азот (вместе с атмосфер­ными осадками) попадает в экосистему. Диссоциируя в воде, азотная кислота подкис­ляет атмосферные осадки, а нитратный ион из почвенных растворов и водоемов легко усваивается растениями при любой реакции среды.

2. Аммонификация

Поглощенный из почвы (в нитратной и аммонийной форме) или полученный от симбиотрофов (в основном в аммонийной форме) мине­ральный азот, растения используют для синтеза аминокислот (белков), нуклеиновых кислот и других органических азотсодержащих соединений. Таким образом, азот из ми­неральной формы нахождения переходит в органическую. В составе органических со­единений азот пребывает в фитомассе растений до ее отмирания и/или поедания жи­вотными-фитофагами, а также передается по пастбищной пищевой цепи экосистемы. В конечном итоге, все азотсодержащие органические соединения попадают в детритную пищевую цепь, где и происходит их разложение до минеральных форм, начинающееся с процессов так называемой аммонификации.

Аммонификация - разложение микроорганизмами азотсодержащих органических со­единений (белков, мочевины, нуклеиновых кислот и др.) с образованием свободного аммиака:

Органический азот → NH3

3. Нитрификация

Нитрификация-процесс биологического превращения восстановленных соединений азота в окисленные неорганические по схеме:

NH4+ + 2O2 → NO2 + 2H2O

2NO2 + O2 → 2NO3

4. Денитрификация

Денитрификация-микробиологический процесс восстановления окисленных соеди­нений азота (нитратов, нитритов) до газообразных азотистых продуктов (обычно до N2):

3- → NО2- → N2O → N2↑ → NH4+

Денитрификация происходит в результате жизнедеятельности бактерий, факультативных анаэробов, ис­пользующих в отсутствие кислорода нитраты и нитриты в качестве окислителей (ана­эробное дыхание). Процесс сопряжен с окислением органических веществ и катализиру­ется особыми ферментами. В ходе денитрификации азот удаляется из почвы и воды в виде газообразного N2, поступающего в атмосферу.

Процесс денитрификации активно протекает во влажных, плохо аэрируемых или зато­пляемых почвах, эвтрофных водоемах, при рН 7-8, достаточном количестве нитратов и легкодоступного органического вещества. Денитрификацию считают главной причи­ной потерь азота в земледелии - удобрения могут утрачивать в результате денитрифи­кации до 50% связанного азота. Хотя процессы денитрификации осуществляются мик­роорганизмами не с целью получения азота, но именно они «замыкают» круговорот азота в экосистеме, возвращая газообразный N2 в атмосферу.

 

 

Влияние человека на круговорот азотадостаточно велико. Он выращивает на обширных площадях растения, а также промышленным способом связывает азот. Подсчитано, что сельское хозяйство и промышленность дают почти на 60% больше фиксированного азота, чем естественные наземные экосистемы. В этом случае люди пытаются копировать природную стратегию взаимовыгодного сотрудничества, способствующую выживанию. Если бы специалистам по генной инженерии удалось индуцировать образование клубеньков у пшеницы, кукурузы, риса и других пищевых культур, это помогло бы сэкономить немало средств и энергии, избавило бы от необходимости внесения азотных удобрений. Хороших результатов можно достигнуть и сейчас, если лучше использовать бобовые в сельском хозяйстве. Бобовые растения – природные фиксаторы азота – работают активнее в среде с малым количеством азота, поэтому внесение азотных удобрений под бобовые не имеет смысла, так как выключает биофиксацию атмосферного N2. Из азота, поступившего с удобрениями, очень небольшая часть вовлекается в круговорот повторно. Большая доля его теряется: выносится с водой, с урожаем и в процессе денитрификации. В США, например, количество используемых азотных удобрений с 1950 г. возросло в 12 раз, а урожай – не более чем в 2 раза. Кроме того, избыток нитратов в пище и воде может быть опасен для людей. Напрасной траты азота и энергии можно избежать, если рационально чередовать зерновые и бобовые культуры в севообороте.

Ежегодно в глобальном круговороте биотическим сообществом усваивается около 109 т азота. При этом 80% его поступает с суши и воды и лишь около 20% добавляется «нового» азота из атмосферы.

В масштабе биосферы, благодаря механизмам обратной связи и большому резервному фонду, круговорот азота относительно совершенен. Хотя часть азота из густонаселённых областей уходит в глубоководные океанические отложения и выключается из круговорота, возможно, на миллионы лет – эта потеря в какой-то мере компенсируется поступлением его в воздух с вулканическими газами. Следовательно, извержения вулканов нельзя считать только вредными. Если бы вдруг удалось заблокировать все вулканы на Земле, то можно предположить, что от голода страдало бы не меньше людей, чем сейчас страдает от их извержений.

Антропогенная денитрификация(удаление избыточных нитритов и нитратов) и стремление к сокращению производства нитратных удобрений соответствуют природным процессам и способствуют сохранению цикличности движения азота.

В последнее время содержание N2 в атмосфере не менялось.

Можно думать, что поступление его в атмосферу (денитрификация) и отток из атмосферы (азотфиксация) в целом уравновешены, хотя, возможно, фиксация слегка преобладает вследствие деятельности человека.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.