|
|||
КРУЧЕНИЕ ПРЯМОГО БРУСА КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯКРУЧЕНИЕ ПРЯМОГО БРУСА КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ Кручение – вид сопротивления, при котором в поперечных сечениях бруса возникает только один внутренний силовой фактор – крутящий момент Т. Остальные силовые факторы (N, Qy, Qz, My, Mz) отсутствуют. Вал – брус, работающий на кручение. Принято внешние силовые факторы называть вращающими или скручивающими моментами и обозначать М; внутренние усилия – крутящим моментом Т (от англ. torsion, torque) В расчетах на прочность и жесткость при кручении знак крутящего момента значения не имеет, но для удобства построения эпюр принято правило: Крутящий момент считают положительным, если при взгляде в торец отсеченной части бруса он стремится вращать сечение против хода часовой стрелки. Положительный крутящий момент вызывает положительные касательные напряжения 5.1. ВНУТРЕННИЕ УСИЛИЯ ПРИ КРУЧЕНИИ На основании метода сечений крутящий момент в произвольном поперечном сечении бруса численно равен алгебраической сумме внешних скручивающих моментов, приложенных к брусу по одну сторону от рассматриваемого сечения. На рис. 5.1, б: ∑ M x = 0; T1 + M1 = 0; T1 = −M1. На рис. 5.1, в: ∑ M x = 0; TIII – M4 = 0; TIII = M4. Эпюра крутящих моментов – график изменения крутящих моментов по длине бруса. Во всех случаях эпюры внутренних усилий строят на осевой линии бруса. Величину силового фактора откладывают по нормали к оси. 5.2. НАПРЯЖЕНИЯ ПРИ КРУЧЕНИИ Теория брусьев, имеющих круглое сплошное или кольцевое поперечное сечение, основана на следующих положениях. Поперечные сечения бруса плоские до деформации остаются плоскими и в деформированном состоянии – гипотеза твердых дисков (Бернулли). Радиусы поперечных сечений не искривляются и сохраняют свою длину. Поперечные сечения остаются круглыми. Расстояния между поперечными сечениями вдоль оси бруса не изменяются. Для установления связи напряжений с внутренними усилиями рассмотрим несколько этапов решения задачи. I. Условие равновесия – статическая сторона задачи (рис. 5.2, в). τ·dA – элементарное усилие; ρ·(τ·dA) – элементарный крутящий момент; Т – равнодействующий момент касательных напряжений Для нахождения сдвигающих напряжений τ рассмотрим физическую сторону задачи. II. Физическая сторона задачи – закон Гука при сдвиге (5.2) связывающий касательные напряжения τ с деформацией сдвига γ. Деформацию сдвига γ найдем, рассмотрев геометрическую сторону задачи. III. Деформационная (геометрическая) сторона задачи Левый торец бруса длиной х (рис. 5.2, а) под действием внешнего скручивающего момента М повернется на угол φ. В элементе длиной dx аналогичный угол dφ (рис. 5.2, б). Образующая цилиндра отклоняется от исходного положения на угол γ. На поверхности элемента радиусом r угол γ принимает максимальное значение В цилиндре произвольного радиуса ρ внутри элемента угол γ: (5.3) Рассмотренные ранее этапы объединяет математическая сторона задачи.
Закон распределения касательных напряжений – линейный. В центре τ = 0, так как ρ = 0, на периферии τ = τmax, так как ρmax= r (рис. 5.2, г).
|
|||
|