Хелпикс

Главная

Контакты

Случайная статья





Алгебра 9 класс. Тема «Повторение. Вычисления». а2 – в2 = (а – в)(а + в). Как освободиться от иррациональности (квадратного корня) в знаменателе.. Если знаменатель дроби – произведение, содержащее корень, то числитель и знаменатель данной дроби умножаем н



                         Алгебра 9 класс

Тема «Повторение. Вычисления»

 

1. Продолжаем повторять свойства арифметического квадратного корня.

           

 

                                       

                 

 

 

 

 

                                      = a

 

 = a

 

 

Для выполнения следующих заданий  из Основного Государственного Экзамена будем использовать формулу разности квадратов:

 

а2 – в2 = (а – в)(а + в)

(а – в)(а + в) = а2 – в2

 

Задание.

1. Какое из данных ниже чисел является значением выражения?

 

        ) =   = 17 – 15 = 2

 

 

   122 = 13 – 144 = - 131(видео)

2.  =    =  = 2

 

Удобно: при разложении подкоренного выражения на два множителя: надо сначала разделить его на числа, из которых нельзя извлечь корень (2; 3; 5; 6; 7; 10; 11; 13; 14;15…) и определить, можно ли из полученного числа извлечь корень. Если можно, то записать его в виде произведения корней. Например,

 =  =  =

 

(98 разделим на 2, получим 49.  = 7, значит множители будут 49 и 2)

 =  =  =  (видео)

 

3. Как освободиться от иррациональности (квадратного корня) в знаменателе.

Если знаменатель дроби – произведение, содержащее корень, то числитель и знаменатель данной дроби умножаем на этот корень.

Если знаменатель дроби – сумма (разность), содержащая корень, то числитель и знаменатель дроби умножаем на разность (сумму) этих же выражений. Например,

 =    =

 =  =  =  =  =  = =

 

 =  =  =  =  = 3( (видео).

 

(Нам надо, чтобы в знаменателе появилась формула разности квадратов. В знаменателе разность , значит, числитель и знаменатель будем умножать на сумму )

 

     Домашнее задание (фото) Выполнить задания к 14 мая.

                (Все вычисления выполняем в тетради)



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.