Хелпикс

Главная

Контакты

Случайная статья





Задачи с прикладным характером.



 

Предмет

Класс Дата

Алгебра и начала анализа

11Б 19.05.2020
Этапы урока

Деятельность

 

Добрый день! Сегодня мы решаем задачи с прикладным характером.

По возможности поработаем в zoome, у кого такой возможности не будет, ниже прикрепляю задания для тренировки.

 

Задания для тренировки:

Задачи с прикладным характером.

1.

Скейтбордист прыгает на стоящую на рельсах платформу, со скоростью м/с под острым углом к рельсам. От толчка платформа начинает ехать со скоростью (м/с), где кг — масса скейтбордиста со скейтом, а кг — масса платформы. Под каким максимальным углом (в градусах) нужно прыгать, чтобы разогнать платформу не менее чем до 0,3 м/с?

2.

Если достаточно быстро вращать ведeрко с водой на верeвке в вертикальной плоскости, то вода не будет выливаться. При вращении ведeрка сила давления воды на дно не остаeтся постоянной: она максимальна в нижней точке и минимальна в верхней. Вода не будет выливаться, если сила еe давления на дно будет положительной во всех точках траектории кроме верхней, где она может быть равной нулю. В верхней точке сила давления, выраженная в ньютонах, равна , где m — масса воды в килограммах, v — скорость движения ведeрка в м/с, L — длина верeвки в метрах, g — ускорение свободного падения (считайте м/с ). С какой наименьшей скоростью надо вращать ведeрко, чтобы вода не выливалась, если длина верeвки равна 62,5 см? Ответ выразите в м/с.

3.

Уравнение процесса, в котором участвовал газ, записывается в виде , где p (Па) — давление в газе, V — объeм газа в кубических метрах, a — положительная константа. При каком наименьшем значении константы a уменьшение в 5 раз объeма газа, участвующего в этом процессе, приводит к увеличению давления не менее, чем в 25 раз?

4.

Некоторая компания продает свою продукцию по цене руб. за единицу, переменные затраты на производство одной единицы продукции составляют руб., постоянные расходы предприятия руб. в месяц. Месячная операционная прибыль предприятия (в рублях) вычисляется по формуле Определите месячный объeм производства q (единиц продукции), при котором месячная операционная прибыль предприятия будет равна 1 000 000 руб.

5.

Скорость автомобиля, разгоняющегося с места старта по прямолинейному отрезку пути длиной км с постоянным ускорением км/ч 2, вычисляется по формуле Определите наименьшее ускорение, с которым должен двигаться автомобиль, чтобы, проехав один километр, приобрести скорость не менее 100 км/ч. Ответ выразите в км/ч2.

6.

Амплитуда колебаний маятника зависит от частоты вынуждающей силы, определяемой по формуле , где — частота вынуждающей силы (в ), — постоянный параметр, — резонансная частота. Найдите максимальную частоту , меньшую резонансной, для которой амплитуда колебаний превосходит величину не более чем на Ответ выразите в

7.

В телевизоре ёмкость высоковольтного конденсатора Ф. Параллельно с конденсатором подключeн резистор с сопротивлением Ом. Во время работы телевизора напряжение на конденсаторе кВ. После выключения телевизора напряжение на конденсаторе убывает до значения U (кВ) за время, определяемое выражением (с), где — постоянная. Определите (в киловольтах), наибольшее возможное напряжение на конденсаторе, если после выключения телевизора прошло 62,4 с. Ответ дайте в киловольтах.

8.

На рисунке изображена схема вантового моста. Вертикальные пилоны связаны провисающей цепью. Тросы, которые свисают с цепи и поддерживают полотно моста, называются вантами.

Введём систему координат: ось Oy направим вертикально вдоль одного из пилонов, а ось Ox направим вдоль полотна моста, как показано на рисунке.

В этой системе координат линия, по которой провисает цепь моста, имеет уравнение где x и y измеряются в метрах. Найдите длину ванты, расположенной в 40 метрах от пилона. Ответ дайте в метрах.

9.

Зависимость объeма спроса (единиц в месяц) на продукцию предприятия – монополиста от цены (тыс. руб.) задаeтся формулой Выручка предприятия за месяц (в тыс. руб.) вычисляется по формуле Определите наибольшую цену , при которой месячная выручка составит не менее 240 тыс. руб. Ответ приведите в тыс. руб.

10.

Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому , где — мощность излучения звезды (в Ваттах), — постоянная, м — площадь поверхности звезды (в квадратных метрах), а — температура (в кельвинах). Известно, что площадь поверхности не-которой звезды равна м , а мощность её излучения равна Вт. Найдите температуру этой звезды в Кельвинах.

 

 

 

Домашнее задание: не задано

       


  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.