|
|||
Протонно-электронная модель атомного ядра (Рис. 1)Стр 1 из 3Следующая ⇒
Другого ничего в природе нет…. Ни здесь, ни там – в космических глубинах. Все: от песчинок малых до планет из элементов состоит единых»
С помощью опытов Резерфорда, было установлено, что почти вся масса и весь положительный заряд атома сосредоточены в атомном ядре, вокруг которого вращаются отрицательно заряженные электроны. После этого открытия возникал резонный вопрос: а из чего состоит ядро? Ещё в 1913 году, Резерфорд предположил, что в состав любого атомного ядра входит ядро атома водорода. Это предположение было обусловлено тем, что масса ядра любого химического элемента была в целое число раз больше массы ядра атома водорода. Это дало основание рассматривать ядро атома водорода как элементарную частицу. Такая частица была названа протоном.
В 1919 году Резерфорд провел следующий опыт: он обстреливал ядро атома азота a-частицами. При попадании a-частицы в ядро азота, образовались два совершенно новых ядра: по предварительным оценкам, это были ядра атомов кислорода и водорода
Однако полной уверенности в этом не было до тех пор, пока эксперимент не был повторен в камере Вильсона. На фотографии видны расходящиеся прямые линии – это следы a-частиц, которые не испытали соударений с ядрами атомов азота. Тем не менее, на фотографии ясно видно, что след одной a-частицы раздваивается. Это говорит о том, что именно эта a-частица столкнулась с ядром атома азота. По характеру искривления треков было установлено (на этот раз точно), что образовавшиеся ядра действительно являются ядрами атомов кислорода и водорода. Таким образом, Резерфордом фактически была получена первая искусственная ядерная реакция. В уравнении, описывающем данную реакцию, символом , обозначено ядро атома водорода, масса которого составляет приблизительно одну атомную единицу массы (1 а.е.м.), а заряд равен модулю элементарного заряда. Ядро атома водорода также обозначается символом (то есть символом протона, поскольку это одно и то же). Впоследствии были проведены подобные эксперименты и с другими элементами, такими как натрий, алюминий, магний и многими другими. Из всех этих ядер a-частицы выбивали протоны, что подтверждало гипотезу Резерфорда. Тем не менее, очень скоро стало ясно, что ядра не состоят только из протонов. Дело в том, что это противоречило опытным данным. Для примера возьмем ядро бериллия, заряд которого равен четырем элементарным зарядам . Это говорит нам о том, что в ядре бериллия находится 4 протона. Если бы ядро состояло только из протонов, то масса ядра бериллия была бы равна 4 а.е.м. В действительности же, масса ядра бериллия составляет 9 а.е.м. Следовательно, в ядро входят еще какие-то частицы, причем не обладающие электрическим зарядом. Именно на основании этого, в 1929 году Резерфорд высказал предположение о существовании электрически нейтральной частицы, масса которой приблизительно равна массе протона. В 1930 году Вальтер Боте и его студент Герберт Беккер обнаружили следующее: при бомбардировке a-частицами ядра атома бериллия, из ядра исходит какое-то неизвестное излучение. Сначала было выдвинуто предположение о том, что это гамма-лучи, поскольку они имели высокую проникающую способность и никак не отклонялись в магнитном поле. Однако, от этой идеи пришлось отказаться, поскольку данное излучение обладало слишком большой энергией для гамма-лучей. В 1932 году изучением нового излучения занялся ученик Резерфорда - Джеймс Чедвик. Он доказал, что неизвестное излучение – это на самом деле поток нейтральных частиц, масса которых приблизительно равна массе протона. Эту массу удалось определить по характеру взаимодействия с другими частицами. То, что частица электрически нейтральна, следовало из того, что она не отклонялась ни в электрическом, ни в магнитном поле. Такую частицу назвали нейтроном. Итак, нейтрон обозначается символом (поскольку не имеет заряда и обладает массой приблизительно равной 1 а.е.м.). Впоследствии точные измерения показали, что масса нейтрона чуть больше массы протона. Практически сразу после открытия нейтрона физиками Дмитрием Иваненко и Вернером Гейзенбергом была предложена протонно-нейтронная модель строения ядра.
Работая независимо друг от друга, они пришли к выводу, что ядра атомов всех элементов состоят из двух видов частиц: протонов и нейтронов. Эти частицы стали называть нуклонами. Общее число нуклонов в ядре называется массовым числом (поскольку это число определяет массу ядра). Массовое число обозначается буквой А. Число протонов в ядре называется зарядовым числом (поскольку это число определяет заряд ядра). Зарядовое число обозначается буквой Z. Нетрудно догадаться, что число нейтронов в ядре равно разности общего числа нуклонов и числа протонов. То есть, чтобы найти число нейтронов, нужно из массового числа вычесть зарядовое число. Это число обозначается буквой N. Итак, в общем случае, ядро любого химического элемента обозначается следующим образом: где Х – это символ элемента, Z – зарядовое число и А – массовое число. Еще раз уточним, что массовое число равно массе, выраженной в атомных единицах и округленной до целых. Зарядовое число равно заряду, выраженному в единицах элементарного электрического заряда. Для примера рассмотрим ядро натрия. На сегодняшний день найдены изотопы всех химических элементов. изотопы могут являться радиоактивными, изотопы делятся на стабильные и нестабильные. - Стабильные изотопы сохраняются неизменными сколь угодно долго, - нестабильные изотопы со временем превращаются в другие химические элементы в результате радиоактивного распада. как же ядра многих изотопов остаются стабильными? Что удерживает нуклоны в ядре? Ведь между положительно заряженными протонами должны возникать силы электростатического отталкивания. Силы, удерживающие протоны и нейтроны в ядре называются ядерными силами ядерные силы значительно мощнее, чем электростатические силы. Но ядерные силы действуют на очень малом расстоянии, то есть в пределах атомного ядра. Эти силы фундаментально отличаются от гравитационного или электромагнитного взаимодействия и относятся к сильному взаимодействию, о котором упоминалось в девятом и десятом классах. Также к свойствам ядерных сил можно отнести то, что они не являются центральными (то есть не действуют вдоль прямой, соединяющей частицы). Кроме того, ядерные силы не зависят от величины заряда частиц (поскольку они действуют и на незаряженные частицы – нейтроны). Основные выводы: – После открытия протона и нейтрона была предложена протонно-нейтронная модель ядра. – Согласно этой модели все ядра атомов состоят из протонов и нейтронов. Частицы, входящие в состав ядра назвали нуклонами. – Общее число нуклонов в ядре называется массовым числом, а число протонов в ядре называется зарядовым числом.
– Массовое число А численно равно массе ядра данного химического элемента, выраженной в атомных единицах массы и округленной до целого. – Зарядовое число Z численно равно заряду ядра, выраженному в единицах элементарного электрического заряда. – Число нейтронов в ядре определяется как разность массового и зарядового чисел. – В результате исследований было открыто существование разновидностей каких-либо химических элементов, которые обладали одинаковыми химическими свойствами, но имели различную массу. Такие разновидности назвали изотопами. – Ядерные силы – это силы, удерживающие нуклоны в ядре в течение длительного времени. Тем не менее, ядерные силы не распространяются за пределы атомных ядер. Модели атомного ядра. 1. Протонно-электронная модель атомного ядра (Рис. 1) Количество протонов в ядре равно массовому числу, а электроны компенсируют до зарядового числа заряд ядра. Рис. 1. Протонно-электронная модель атомного ядра В 1927 году Гейзенберг доказал ложность данной модели. В 1932 году Д. Чедвик, выполняя по схеме Резерфорда реакцию с бериллием (бериллий бомбардировался α-частицами), обнаружил бериллиевое излучение. И доказал, что в этом излучении присутствует нейтральная частица – нейтрон.
|
|||
|