КОРРОЗИЯ МЕТАЛЛОВ И СПЛАВОВ
1. Коррозия (от латинского «corrodere» разъедать) – самопроизвольный окислительно-восстановительный процесс разрушения металлов и сплавов вследствие взаимодействия с окружающей средой.
2. Виды коррозии: химическая и электрохимическая
I. Химическая – коррозия, обусловленная взаимодействием металлов с веществами, содержащимися в окружающей среде, при этом происходит окислительно-восстановительное разрушение металла без возникновения электрического тока в системе.
К химической коррозии относятся:
- газовая коррозия - коррозионное разрушение под воздействием газов при высоких температурах;
- коррозия в жидкостях-неэлектролитах.
Газовая
- химическая коррозия, обусловленная взаимодействием металлов с газами.
Основной окислитель – кислород воздуха.
Процессы химической коррозии железа:
2Fe + O2 = 2FeO
4Fe + 3O2 = 2Fe2O3
3Fe + 3O2 = FeO·Fe2O3 (смешанный оксид железа (II, III) )
4Fe + 3O2 + 6H2O = 4Fe(OH)3 (на воздухе в присутствии влаги)
Fe(OH)3 t °C→ H2O + FeOOH (ржавчина)
3Fe + 4H2O(пар) = Fe3O4 + 4H2
2Fe + 3Cl2 = 2FeCl3
Химическая коррозия в жидкостях-неэлектролитах
Жидкости-неэлектролиты- это жидкие среды, которые не являются проводниками электричества. К ним относятся: органические (бензол, фенол, хлороформ, спирты, керосин, нефть, бензин); неорганического происхождения (жидкий бром, расплавленная сера и т.д.). Чистые неэлектролиты не реагируют с металлами, но с добавлением даже незначительного количества примесей процесс взаимодействия резко ускоряется. Например, если нефть будет содержать серу или серосодержащие соединения (сероводород, меркаптаны) процесс химической коррозии ускоряется. Если вдобавок увеличится температура, в жидкости окажется растворенный кислород - химическая коррозия усилится.
Присутствие в жидкостях-неэлектролитах влаги обеспечивает интенсивное протекание коррозии уже по электрохимическому механизму.
Химическая коррозия в жидкостях-неэлектролитах подразделяется на несколько стадий:
- подход окислителя к поверхности металла;
- хемосорбция реагента на поверхности;
- реакция окислителя с металлом (образование оксидной пленки);
- десорбция оксидов с металлом (может отсутствовать);
- диффузия оксидов в неэлектролит (может отсутствовать).
Для защиты конструкций от химической коррозии в жидкостях-неэлектролитах на ее поверхность наносят покрытия, устойчивые в данной среде.
II. Электрохимическая – окислительно-восстановительное разрушение сплавов и металлов, содержащих примеси, с возникновением электрического тока в системе.
АНОД (более активный металл) – разрушается
| КАТОД (менее активный металл или примесь неметалла, способного + ē) – восстанавливается среда
| Ме0 – nē → Men+ (процесс окисления)
| кислая среда: 2H+ + 2ē → H2 (процесс восстановления)
влажный воздух: O2 + 2H2O + 4ē → 4OH- (процесс восстановления)
| Пример:
Электрохимическая коррозия железной детали с примесями меди во влажном воздухе.
А: Fe0 - 2ē → Fe2+ (Окисление)
К: O2 + 2H2O + 4ē → 4OH- (процесс восстановления)
Итог: 2Fe + O2 + 2H2O = 2Fe(OH)2 (белая ржавчина)
4Fe(OH)2 + 2H2O + O2 = 4Fe(OH)3 (бурая ржавчина)
Fe(OH)3 = FeOOH + H2O
III. Защита от коррозии:
1). Металлические покрытия – анодное (покрытие более активным металлом Zn, Cr) – оцинкованное железо;катодное (покрытие менее активным металлом Ni, Sn, Ag, Au) – белая жесть (лужёное железо) – не защищает от разрушения в случае нарушения покрытия.
2). Неметаллические покрытия – органические (лаки, краски, пластмассы, резина - гумирование, битум);
неорганические(эмали).
3). Протекторная защита – присоединение пластины из более активного металла (Al, Zn, Mg) – защита морских судов.
4). Электрохимическая (катодная) защита – соединение защищаемого изделия с катодом внешнего источника тока, вследствие чего изделие становится катодом. Ток идёт в противоположном направлении.
5). Добавление ингибиторов ( в зависимости от природы металла – NaNO2, Na3PO4, хромат и бихромат калия, ВМС органические соединения), адсорбируются на поверхности металла и переводят его в пассивное состояние.
|