Хелпикс

Главная

Контакты

Случайная статья





Поверхности второго порядка: сфера, эллипсоид, конус, гиперболоид, параболоид.



21. Поверхности второго порядка: сфера, эллипсоид, конус, гиперболоид, параболоид.

Сфера— замкнутая поверхность, геометрическое место точек в пространстве, равноудалённых от данной точки, называемой центром сферы. Сфера также является телом вращения, образованным при вращении полуокружности вокруг своего диаметра.

Сфера является частным случаем эллипсоида, у которого все три оси (полуоси, радиусы) равны.

S = 4πr2

S = πd2

 

Конус.

Поверхность, образованная прямыми линиями, проходящими через данную точку Р и

пересекающими данную плоскую линию L (не проходящую через Р) называется

конической поверхностью или конусом. При этом линия L называется

направляющей конуса, точка Р – ее вершиной, а прямая, описывающая

поверхность, называется образующей.

 - уравнение конуса

Эллипсоид.

Рассмотрим сечение поверхности с плоскостями, параллельными xOy. Уравнения

таких плоскостей z=h, где h – любое число. Линия, получаемая в сечении,

определяется двумя уравнениями:

Если |h|>c, c>0, то  точек пересечения поверхности с плоскостями z=h нет.

Если |h|=c, т.е. h=±c, то

. Линия пересечения вырождается в две точки (0;0;с) и (0;0;-с). Плоскости z=c и

z=–c касаются поверхности.

Если |h|<c, то уравнения можно переписать в виде:

Линия пересечения есть эллипс с полуосями.

Эллипсоид – замкнутая овальная поверхность, где a,b,с – полуоси. Если все

они различны, то эллипсоид называется трехосным. Если какие-либо две

полуоси равны, то тело называется эллипсоид вращения, если a=b=c, то тело

называется сферой x2+y2+z2=R2

  

Гиперболоид— это вид поверхности второго порядка в трёхмерном пространстве, задаваемый в декартовых координатах уравнением

(однополостный гиперболоид),

где a и b — действительные полуоси, а c — мнимая полуось;

или     (двуполостный гиперболоид),

где a и b — мнимые полуоси, а c — действительная полуось.

При этом a, b и c — положительные числа.

Если a = b, то такая поверхность называется гиперболоидом вращения. Однополостный гиперболоид вращения может быть получен вращением гиперболы вокруг её мнимой оси, двуполостный — вокруг действительной. Двуполостный гиперболоид вращения также является геометрическим местом точек P, модуль разности расстояний от которых до двух заданных точек A и B постоянен: | APBP | = const. В этом случае A и B называются фокусами гиперболоида.

Однополостный гиперболоид является дважды линейчатой поверхностью; если он является гиперболоидом вращения, то он может быть получен вращением прямой вокруг другой прямой, скрещивающейся с ней

Параболоиды.

Эллиптический. При пересечении поверхности координатами плоскостями Oxz и Oyz получается соответственно параболы   и .

Таким образом, поверхность, определяемая уравнением, имеет вид выпуклой, бесконечно

расширяющейся чаши.

Гиперболический.

Рассечем поверхность плоскостями z=h. Получим кривую

которая при всех h≠0 является гиперболой. При h>0 ее действительные оси параллельны оси Ox, при h<0 – параллельные оси Oy. При h=0 линия

пересечения распадается на пару пересекающихся прямых:

При пересечении поверхности плоскостями, параллельности плоскости Oxz (y=h),

будут получаться параболы, ветви которых направлены вверх.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.