![]()
|
|||||||
Исследование движения смеси на наклонной плоскости4.2 Исследование движения смеси на наклонной плоскости Закономерности движения частицы, идеализируемой в виде материальной точки по вибрирующей шероховатой поверхности, представляют интерес не только для теории вибротранспортирования и вибросепарациии тел малых размеров, но также и для описания более сложных процессов, например, вибрационного разделения сыпучих смесей, вибротранспортирования и сепарации твердых или упругих тел конечных размеров, а также слоя сыпучего материала. Дифференциальные уравнения движения частиц по вибрирующей шероховатой поверхности играют в теории указанных процессов почти столь же фундаментальную роль, что и уравнение движения маятника в общей теории колебаний. Приводимые ниже результаты относятся к случаю, когда вибрирующая поверхность является плоской и совершает поступательные колебания, а поле задаваемых сил, действующих на частицу, однородно и, в частности, представляет собой поле силы тяжести. Эти результаты, однако, могут быть использованы и в общем случае, если перемещение частицы по поверхности за период колебаний мало по сравнению с радиусом кривизны поверхности, а также с расстояниями, на которых траектории колебаний и задаваемые силы претерпевают сколько-нибудь существенные изменения. Дифференциальные уравнения относительного движения частицы в осях xOy, жестко связанных с вибрирующей плоскостью, в рассматриваемом случае имеют вид (ось Ox направлена вдоль, а ось Oy - нормально плоскости) · · (4.6) · · (4.7) где m - масса частицы; А и ω - соответственно амплитуда и частота колебаний; · · (4.8) где f - коэффициент трения скольжения, а нормальная реакция определяется из (4.7): · · (4.9) При движении частицы без отрыва от поверхности ("без подбрасывания"), · · (4.10) Параметр w, равный отношению амплитуды поперечной составляющий переносной силы инерции
Состояние относительного покоя при этом сохраняется до тех пор, пока выполняется условие: где ƒ1 - коэффициент трения покоя, ƒ1 ≥ ƒ. Уравнение скольжения частицы по поверхности (y ≡ 0) получается из (4.6) при учете (4.8) и (4.9): где
где В качестве связи продольных проекций скоростей · · (4.11) Состояние относительного покоя при этом сохраняется до тех пор, пока выполняется условие: · · (4.12) где f'- коэффициент ударного трения, также часто принимаемый равным f. Соотношения (4.11), (4.12) представляют собой достаточно грубые приближения, дающие, однако, при соответствующем выборе постоянных R, λ и f хорошее согласие экспериментальных и теоретических значений скорости вибротранспортирования. При определенных условиях, кроме силы сухого трения, необходимо учитывать также и силу вязкого сопротивления движению частицы в окружающей ее среде. При этом также используют две гипотезы: в одном случае сила сопротивления считается пропорциональной первой или более высоким степеням относительной, а в другом - абсолютной скорости движения частицы. Для решения вопроса о необходимости учета силы вязкого сопротивления нужно оценить отношение этой силы · где d - размер частицы; Так, для ν=0,15 см2/с и ρ=1,2• 10-3г/см3 (воздух при 20° С), f=0,5 в координатах ν=Aω, d сила B составляет не более 10% от fmg при плотностях частицы ρm, равных 0,4; 1,0 и 3,0 г/см3. Сопротивление воздуха необходимо учитывать при относительно мелких и относительно легких частицах. В общем случае частица может находиться относительно вибрирующей поверхности в одном из следующих четырех состояний: относительного покоя Наибольший практический интерес представляют режимы движения частиц, характеризующиеся циклическим чередованием указанных состояний (этап движения), причем время одного цикла, называемое периодом переключений режима , равно или в целое число p раз превышает период колебаний поверхности . Такие режимы, как правило, устанавливаются по истечении некоторого времени после попадания частицы на поверхность или после возникновения колебаний поверхности. Каждый установившийся режим может быть охарактеризован определенным набором циклически повторяющихся символов 0,+,- и , а также кратностью р и моментами перехода от одного этапа движения к другому. При этом достаточно указать лишь чередование символов и значения моментов в пределах одного периода переключений. Запись вида назовем формулой установившегося режима; эта запись указывает, что начиная с момента соответствующего значения фазового угла от Для относительно небольших углов наклона α плоской поверхности к горизонту характерны установившиеся режимы, при которых частица за каждый период переключений перемещаются вдоль поверхности на равные расстояния, так что средняя скорость движения V, называемая в этом случае скоростью вибротранспортирования или виброперемещения, остается неизменной, и решения уравнения (4.6) имеют вид: · · (4.13) где V - постоянная, а φ(t) и ψ(t) - периодические функции t с периодом, равным периоду переключений Tп; такие режимы назовем регулярными. Установившиеся режимы характерны, преимущественно, для значительных углов наклона плоской поверхности к горизонту. В этих режимах неизменное значение сохраняет среднее за период ускорение частицы Wm. Решения уравнений (4.6), соответствующие этим режимам, имеют вид:
Выяснение характера, а также областей существования различных устойчивых установившихся режимов движения частицы является одной из основных задач теории. При этом целесообразно ограничиться исследованием устойчивости движения не относительно координат частицы и ее скоростей, а относительно упомянутых выше моментов перехода . Соответствующее определение устойчивости вполне аналогично определению устойчивости по Ляпунову, хотя и является "менее жестким", так как возможны режимы неустойчивости по Ляпунову, но устойчивые по моментам перехода. С математической точки зрения, рассматриваемая задача сводится к изучению решений нелинейных дифференциальных уравнений, которые в каждой из определенных частей фазового пространства являются линейными, однако имеют в каждой такой части различную аналитическую запись и даже различный порядок. Аналитическое решение подобной задачи может быть выполнено точными методами - так называемым обратным методом, а также методами поэтапного интегрирования, припасовывания, точечных отображений. Могут быть использованы и приближенные методы - гармонического баланса и прямого разделения движений. Помимо аналитических методов можно использовать графические построения, а также вычислительные машины. Ниже, без воспроизведения процесса решения задачи, приведены лишь окончательные результаты.
· · (4.14) (
И функции этих параметров:
функция f(a,b) будет являться решением трансцендентного уравнения При |a|>p возможны ускоренные движения частицы. Все регулярные режимы имеют период переключений, совпадающий с периодом колебаний поверхности T и, если исключить тривиальный случай абсолютного покоя, могут быть всего четырех видов (с двумя подвидами А и Б, отвечающими режимам 3 и 4). В режимах 1,3, и 4 имеются движения частицы вперед и назад с мгновенными остановками. В режимах 4А и 4Б частица скользит только в одном направлении, в то время как при прочих режимах имеются этапы скольжения, как в положительном, так и в отрицательном направлениях. Условия существования каждого режима распадаются на две группы соотношений, которые переходят одна в другую. В некоторых случаях допустимо считать коэффициенты трения покоя и скольжения f1 и f одинаковыми. При этом согласно (4.14): т.е. число определяющих безразмерных параметров становится равным двум, и области существования установившихся режимов могут быть изображены на плоскости. Квадранту плоскости, определяемому неравенствами В рассматриваемом случае f1=f вся область возможных значений Аналогичное положение имеет место, когда коэффициенты трения f1 и f неодинаковы, но угол наклона плоской поверхности к горизонту меньше по модулю угла трения скольжения При вибрации, в случае выполнения Аналогичное положение наблюдается и в случае Итак, все возможные установившиеся режимы движения частицы при отсутствии подбрасывания устойчивы (по крайней мере, в "малом") во всей области их существования, за исключением, быть может, их границы. Более сложная картина характерна для случая движения с подбрасыванием, когда области устойчивости установившихся режимов движения не совпадают с областями их существования. Наибольший интерес для приложений представляет определение средней скорости и ускорения частицы в установившихся режимах движения. Их вычисление не вызывает существенных затруднений, если найдены моменты перехода от одного этапа к другому в установившемся движении; после этого дело сводится к легко выполняемому интегрированию (4.6). В результате находится перемещение частицы S за один период переключений
Для практических расчетов удобно пользоваться программой PAVN. В программе автоматически проверяется области применения гипотез взаимодействия частиц с лотком. Режимы без подбрасывания. В случае, когда допустимо считать, что f1=f, определение Vср значительно облегчается В случае чисто продольных колебаний плоской поверхности (β=0) подбрасывание частицы отсутствует при любых значениях параметров. Однако в наиболее важном режиме 2 (типа + -) средняя скорость движения частицы составит · · (4.15) где Указанный режим имеет место при В еще более частном, но имеющем важные приложения случае чисто продольных колебаний горизонтальной поверхности
Проведенные исследования показывают, что с увеличением угла наклона скорость транспортирования возрастает, при этом для тихоходных режимов наблюдается более интенсивное увеличение скорости. Благоприятно сказывается также уменьшение угла вибрации. Однако увеличение угла наклона не обеспечивает резкого повышения скорости. При транспортировании на подъем скорость весьма существенно снижается Таким образом, хотя вибротранспортирование под уклон и повышает скорость перемещения, но, как правило, существенно не превосходит амплитудных значений скорости колебаний несущего органа. При перемещении под уклон для повышения скоростей транспортирования следует увеличить амплитуду колебаний, снижать угол вибрации и частоту колебаний.
|
|||||||
|