![]()
|
||||||||||||||||||||||
Для идеальной оптической системы линейное увеличение для любой величины предмета. ⇐ ПредыдущаяСтр 2 из 2 Для идеальной оптической системы линейное увеличение для любой величины предмета. Угловое увеличение оптической системы – это отношение тангенса угла между лучом и оптической осью в пространстве изображений к тангенсу угла между сопряженным с ним лучом в пространстве предметов и осью:
В параксиальной области углы малы, и следовательно, угловое увеличение – это отношение любых из следующих угловых величин:
Продольное увеличение оптической системы – это отношение бесконечно малого отрезка, взятого вдоль оптической оси в пространстве изображений, к сопряженному с ним отрезку в пространстве предметов:
14. Главными плоскостями системы называется пара сопряженных плоскостей, в которых линейное увеличение равно единице ( Главные точки Рассмотрим случай, когда линейное увеличение равно нулю, или бесконечности. Отодвинем плоскость предметов бесконечно далеко от оптической системы. Сопряженная ей плоскость называется задней фокальной плоскостью, а точка пересечения этой плоскости с оптической осью – задний фокус
Расстояние от задней главной точки до заднего фокуса называется задним фокусным расстоянием Расстояние от последней поверхности до заднего фокуса называется задним фокальным отрезком Передний фокус Если лучи выходят из переднего фокуса, то они идут в пространстве изображений параллельно. Переднее фокусное расстояние Передний фокальный отрезок Если 15. Основные соотношения параксиальной оптики связывают между собой фокусные расстояния, положение и размеры предмета и изображения, угловое, линейное и продольное увеличения.
Таким образом, увеличение можно выразить как через отрезок
16. Инвариант Лагранжа-Гельмгольца связывает линейный размер предмета и угловой размер пучка лучей (рис.5.3.4). Эта величина инвариантна, то есть неизменна в любом пространстве.
получим инвариант Лагранжа-Гельмгольца:
17. . 18. Аберрации · монохроматические · хроматические Монохроматические аберрации присутствуют, даже если оптическая система работает при монохроматическом излучении. Монохроматические аберрации делятся на несколько типов:
Обычно все последующие аберрации добавляются к уже существующим. Но мы будем рассматривать каждый тип аберрации по отдельности, как если бы только он и существовал. Хроматические аберрации – это проявление зависимости характеристик оптической системы от длины волны света (хромо – цвет). Хроматические аберрации приводят к тому, что в изображениях неокрашенных предметов появляется окрашенность. Хроматические аберрации появляются из-за того, что оптические системы изготовлены из оптических стекол с показателями преломления, зависящими от длины волны Существуют два основных вида хроматизма:
19. КАУСТИЧЕСКАЯ поверхность - поверхность, являющаяся огибающей световых лучей, исходящих из одной точки и прошедших через оптическую систему. По форме каустической поверхности, которая определяется свойствами оптической системы, можно классифицировать аберрации оптических систем. У безаберрационных оптических систем каустическая поверхность обращается в точку. 20. Сферическая аберрация приводит к тому, что лучи, выходящие из осевой точки предмета, не пересекаются в одной точке, образуя на плоскости идеального изображения кружок рассеяния. Ею обладают все линзы со сферическими поверхностями. Чтобы ее устранить, необходимо сделать поверхности не сферическими. Сферическую аберрацию 3 порядка называют также первичной сферической аберрацией.
Кома появляется при смещениях точки предмета с оси. Кома добавляется к другим аберрациям (например, к сферической), но мы будем рассматривать ее отдельно от других аберраций (рис.8.2.7).
21. Апохромат — подтип ахроматов, у которых хроматические и сферические аберрации устранены значительно лучше, чем у обычных ахроматов. В отличие от ахроматических оптических систем, у которых фокусное расстояние совпадает для двух различных длин волн, в апохроматических системах фокусное расстояние уравнено в трёх точках спектра. Ахромат - ландшафтная линза, сложная линза, состоящая из двух (собирательной и рассеивающей), чаще склеенных линз (рис.). Линзы изготовлены из неодинаковых по дисперсии света сортов оптического стекла, выбираемых так, что для каких-либо двух длин волн света полностью (см.рис.), а для остальных значительно устранена хроматическая аберрация. Схема ахромата. Тонкими линиями показан ход лучей: 1 — в жёлтой области спектра; 2 — в сине-фиолетовой области спектра. 22. . 23. Апертурная диафрагма, действующаядиафрагма — специально установленная диафрагма или оправа одной из линз, которая ограничивает пучки лучей, выходящие из точек предмета, расположенных на оптической оси и проходящих через оптическую систему. Часто, располагается вблизи центра формирующей оптическое изображение оптической системы. Её изображение, сформированное предшествующей (по ходу лучей) частью оптической системы, определяет входной зрачок системы. Сформированное последующей частью — выходной зрачок.
24. Полевая диафрагма, диафрагма поля зрения — непрозрачная преграда, ограничивающая линейное поле оптической системы в пространстве предметов или в пространстве изображений. Располагается в непосредственной близости от одного из фокусов оптической системы (в системах с оборачивающими элементами может располагаться в одном из промежуточных фокусов). Может иметь форму круга (в микроскопах, телескопах). В спектральных приборах имеет форму щели. Определяет, какая часть пространства может быть изображена оптической системой. Из центра входного зрачка диафрагма поля зрения видна под наименьшим углом. 25. Виньетирование — затемнение изображения по краям кадра (в фотографии и оптике). Виньетирование — ослабление проходящего под углом по отношению к оптической оси потока лучей в оптической системе. Приводит к постепенному падению яркости изображения от центра к краям, соответственно больше всего заметно по углам кадра. Термин применяется и к затемнению части изображения из-за различных преград на пути света. 26. На рисунке 2.1. изображен разрез глазного яблоки показаны основные детали глаза. 27. Лупа — оптическая система, состоящая из линзы или нескольких линз, предназначенная для увеличения и наблюдения мелких предметов, расположенных на конечном расстоянии. Микроскоп — прибор, предназначенный для получения увеличенных изображений, а также измерения объектов или деталей структуры, невидимых или плохо видимых невооружённым глазом. Представляет собой совокупность линз. 28. Телескоп- прибор, предназначенный для наблюдения небесных светил. В частности, под телескопом понимается оптическая телескопическая система, применяемая не обязательно для астрономических целей 29.
|
||||||||||||||||||||||
|