Хелпикс

Главная

Контакты

Случайная статья





Разбор заданий из тренировочного модуля.



 

29.05.2020 г.

Тема. Решение задач при помощи систем уравнений первой степени.

Цели урока: способствовать применению ЗУН к решению задач, научить применять при решении математические термины:

• Решение задач.

• Система уравнений.

• Решение системы уравнений.

 Ход урока.

1. Организационный момент.

2. Актуализация знаний- беседа в чате.

-уравнения

-дробные уравнения

- корень уравнения

 

3. Изучение новой темы.

-Прочесть теорию конспекта

-Записать определения в тетрадь

 

Система уравнений – это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.

Решить систему – это значит найти все её решения.

Алгебраический способ состоит в получении ответа на вопрос задачи с помощью составления уравнения или системы уравнений и последующего решения уравнения или системы.

Рассмотрим задачу. Сошлись два пастуха, Иван и Пётр. Иван и говорит Петру: «Отдай-ка ты мне одну овцу, тогда у меня будет овец ровно вдвое больше, чем у тебя!» А Пётр ему отвечает: «Нет, лучше ты мне отдай одну овцу, тогда у нас будет овец поровну!» Сколько же было у каждого овец?

Мы не знаем, сколько овец у Ивана, и сколько у Петра.

Обозначим за х число овец у Ивана, а за у – число овец у Петра.

Мысленно разделим условие задачи на две независимые части:

1. Иван и говорит Петру: «Отдай-ка ты мне одну овцу, тогда у меня будет овец ровно вдвое больше, чем у тебя! «

2. А Пётр ему отвечает: «Нет, лучше ты мне отдай одну овцу, тогда у нас будет овец поровну!»

Для каждой из частей составим уравнение с двумя неизвестными.

Начнем с первой части.

Если бы Пётр отдал Ивану одну овцу, то у Петра осталось бы  (у – 1) овец.

А у Ивана стало бы (х + 1) овец.

Но тогда у Ивана было бы вдвое больше овец, чем у Петра.

Мы составили два уравнения.

И в первом и во втором уравнении х обозначает число овец у Ивана, а у – число овец у Петра. Другими словами, каждое неизвестное число обозначает одно и то же в обоих уравнениях. Значит, эти уравнения можно рассматривать совместно, то есть объединить их в систему уравнений:

Решим эту систему способом подстановки.

Раскроем скобки в правой части первого уравнения.

Выразим х через у.

Подставим (2у – 3) вместо х во второе уравнение системы. Получим уравнение с одним неизвестным у.

Решим его. Упростим левую часть уравнения.

Перенесем неизвестные в левую часть. уравнения, а числа – в правую.

Подставим у = 5 в первое уравнение.

Получим х = 7.

Система имеет единственное решение: х = 7, у = 5.

Вернемся к исходным обозначениям.

Получаем, что у Ивана было 7 овец, а у Петра 5 овец.

Задачи с помощью системы уравнений можно решать по следующей схеме.

-Сначала вводим обозначения неизвестных.

-Мысленно разделив условие задачи на две части, составляем 2 уравнения и объединяем их в систему.

-Решаем полученную систему уравнений.

-Возвращаемся к условию задачи и использованным обозначениям.

-Отбираем решения и записываем ответ.

Разбор заданий из тренировочного модуля.

1. Решим задачу алгебраическим способом.

Задача 1.

Даны 3 числа, сумма которых равна 23. Если к удвоенному первому числу прибавить второе число и вычесть третье, то получится 32. А если из первого числа вычесть удвоенное второе и прибавить третье, то получится 8.

В задаче 3 неизвестные, поэтому введем следующие обозначения:

Пусть х – первое число, у – второе число, z – третье число.

Мысленно разделим условие задачи на 3 части, по каждой из которых составим уравнение с тремя неизвестными:

Вернемся к условию задачи: первое число 15, второе число 5, третье число 3.

Ответ: 15, 5, 3.

Домашняя работа.

Разобрать задачи:

Составить систему уравнений

1.В трех сосудах 54л воды. Если из первого перелить во второй сосуд 4л, то в обоих сосудах будет воды поровну, а если из третьего сосуда перелить во второй 17л, то во втором сосуде окажется в 4 раза больше воды, чем в третьем. Сколько воды в каждом сосуде?

2. Система уравнений по условию задачи.

Составим систему уравнений по условию задачи: 5% одного числа и 4% другого вместе составляют 46, а 4% первого числа и 5% второго вместе составляют 44. Найдите эти числа.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.