|
|||
ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИСтр 1 из 2Следующая ⇒ 6. ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ Датчик (первичный преобразователь информации) – это устройство, преобразующее контролируемую и регулируемую величину в такой вид сигнала, который более удобен для воздействия на последующие элементы автоматики. В более общей формулировке прибор осуществляет операцию отображения множества сигналов на входе x О X в множество сигналов на выходе y О Y, при этом указанное отображение должно быть однозначным. На входе датчика могут регистрироваться как электрические сигналы, так и не электрические сигналы. С выхода обычно получают электрические сигналы. Это вызвано тем, что электрические сигналы проще усилить и передавать на различные расстояния. В общем виде датчик можно представить в виде чувствительного элемента и преобразователя. Чувствительный элемент в автоматике выполняет функции “органов чувств”. Он нужен для преобразования контролируемой величины в такой вид сигнала, который будет удобным для измерения. В преобразователе происходит преобразование не электрического сигнала в электрический. Измерительное преобразование представляет собой отражение размера одной физической величины размером другой физической величины, функционально с ней связанной. Применение измерительных преобразований является единственным методом практического построения любых измерительных устройств. Измерительный преобразователь — это техническое устройство, построенное на определенном физическом принципе, действия, выполняющее одно частное измерительное преобразование. Работа измерительных преобразователей протекает в сложных условиях, так как объект измерения — это, как правило, сложный, многогранный процесс, характеризующийся множеством параметров, каждый из которых действует на измерительный преобразователь совместно с остальными параметрами. Нас же интересует только один параметр, который называем измеряемой величиной, а все остальные параметры процесса считаем помехами. Поэтому у каждого измерительного преобразователя целесообразно установить его естественную входную величину, которая лучше всего воспринимается им на фоне помех. Подобным образом можно выделить естественную выходную величину преобразователя. По виду естественной выходной электрической величины преобразователи подразделяются на две большие группы: генераторные (с выходной величиной е = f (х) или i = f (x) и внутренним сопротивлением ZBH = const) и параметрические (с ЭДС е = О и выходной величиной в виде изменения R, L или С в функции х). Функция преобразования измерительного преобразователя — это функциональная зависимость выходной величины от входной, описываемая аналитическим выражением или графиком. Чаще всего стремятся иметь линейную характеристику преобразования, т. е. прямую пропорциональность между изменением входной величины и соответствующим приращением выходной величины преобразователя. Для описания линейной характеристики преобразования α= f (х) α0 + SΔX достаточно двух параметров: начального значения выходной величины α 0 (нулевого уровня), соответствующего нулевому (или какому-либо другому характерному) значению входной величины х, и показателя относительного наклона характеристики S = Δ α/Δх, называемого чувствительностью преобразователя. Основной характеристикой преобразователяa=f(x) называется функциональная зависимость выходной величины, выведенная аналитическим или графическим путем. Чувствительность— S=Dα/Dx есть отношение приращения показания Dα указателя к приращению Dx измеряемой величины x. Под порогом чувствительности понимается минимальное измерение значения входной величины, которое может быть зарегистрировано преобразователем. Предел преобразования — это максимальное значение входной величины, которое может быть воспринято преобразователем без его повреждения. Погрешностью преобразователя называется отклонение его реальной характеристики от номинальной, полученной при первоначальной градуировке. В зависимости от того явления, которое используется для преобразования неэлектрической величины в электрическую, преобразователи делятся на три группы: · электромеханические (контактные, реостатные, тензометрические, электростатические, электромагнитные); · тепловые и электрохимические (термоэлектрические, термосопротивления, электрохимические); · электронные и ионизационные (электронные, ионные, ионизационные).
При оценке и сравнении измерительных преобразователей необходимо учитывать следующие их основные свойства. 1. Воспроизводимость функции преобразования. Возможность изготовлять преобразователи с заранее предусмотренными характеристиками является необходимым условием выпуска взаимозаменяемых преобразователей. 2. Постоянство во времени функции преобразования. При изменении с течением времени функции преобразования приходится повторять градуировку, что крайне нежелательно, а в некоторых случаях невозможно (например, преобразователь работает в недоступном месте). 3. Вид функции преобразования. Обычно наиболее желателен линейный вид зависимости у = f (х), что облегчает унификацию выходного сигнала преобразователей с целью использования их с цифровыми измерительными приборами, измерительными информационными системами и вычислительными машинами. 4. Важными характеристиками преобразователя являются его погрешности и чувствительность. Основная погрешность преобразователя может быть обусловлена принципом действия, несовершенством конструкции и технологии изготовления и проявляется она при номинальных значениях внешних факторов. Основная погрешность рассматриваемого отдельно преобразователя может складываться из некоторых составляющих: погрешности, обусловленной неточностью образцовых приборов и мер, с помощью которых производилась градуировка; погрешности за счет приближенного выражения (табличным, графическим, аналитическим способом) функции преобразования; погрешности, обусловленной неполным совпадением функций преобразования при возрастании и убывании измеряемой величины (гистерезис функции преобразования); погрешности от неполной воспроизводимости характеристик преобразователя (например, чувствительности). Последняя погрешность исключается при индивидуальной градуировке. На практике все составляющие проявляются в виде одной основной погрешности. Дополнительные погрешности преобразователя, обусловливаемые принципом его действия, несовершенством конструкции и технологии изготовления, проявляются при отклонении влияющих величин от их номинальных значений. Рассмотренные выше погрешности определяются при неизменных во времени измеряемых величинах и носят название статических. 5. Обратное воздействие преобразователя на измеряемую величину. Преобразователи оказывают обратное влияние на измеряемую величину, искажая ее и вызывая тем самым изменение выходного, сигнала. Обратное влияние на практике учесть трудно, а поэтому стараются его сделать минимальным. 6. Динамические свойства преобразователя. При изменении входной величины в преобразователе возникает переходный процесс, характер которого зависит от наличия в преобразователе элементов, запасающих энергию (двигающиеся детали, электрические конденсаторы, катушки индуктивности, детали, обладающие теплоемкостью и т. д.). Переходный процесс проявляется в виде инерции — запаздывания реакции преобразователя на изменение входной величины. Например, при погружении термопары в среду, температура которой измеряется, термо-э.д.с. на выходе термопары установится в соответствии с измеряемой температурой только по истечении некоторого промежутка времени. При измерении быстро изменяющихся величин преобразователь работает в нестационарном режиме, а поэтому при оценке качества преобразователей необходимо учитывать их динамические характеристики, которые в значительной мере определяют точность измерения. . Обычно от преобразователя требуется, чтобы он вносил минимальное запаздывание в процесс преобразования. Кроме рассмотренных свойств, при оценке преобразователей учитываются также и другие показатели качества их работы: влияние внешних факторов (температуры, давления, вибрации и т. д.), взрывобезопасность, устойчивость к механическим, тепловым, электрическим и другим перегрузкам, удобство монтажа и обслуживания, габариты, масса, удобство градуировки, стоимость изготовления и эксплуатации, надежность и т. д. Для удобства изучения измерительные преобразователи классифицируют по принципу их действия, т. е. по тому явлению, которое используется для преобразования неэлектрической величины в электрическую. Преобразователей, отличающихся принципом действия, очень много. Электрические датчики можно разделить на две группы: · параметрические; · генераторные. Параметрические датчики.Служат для преобразования не электрического регулируемого или контролируемого сигнала в параметры электрических цепей (сопротивление, индуктивность, емкость). Эти датчики делятся на датчики активного сопротивления (контактные, реостатные, потенциометрические, тензодатчики, терморезисторы) и датчики реактивного сопротивления. Генераторные датчики.Служат для преобразования не электрических регулируемых или контролируемых сигналов в параметры ЭДС. Эти датчики не требуют посторонних источников энергии, так как сами являются источниками ЭДС. К генераторным измерительным преобразователям можно отнести: индукционные, пьезоэлектрические, термоэлектрические и некоторые разновидности электрохимических преобразователей.
|
|||
|