Хелпикс

Главная

Контакты

Случайная статья





Пятно будет бледнеть, оставаясь светлее тени.



Пятно будет бледнеть, оставаясь светлее тени. Плоская волна падает на экран с прямоугольной щелью ширины d. При этом в точке Р наблюдается самый глубокий минимум. Затем щель расширяют еще на 0,7 мм и наблюдают следующий минимум. Найдите число открытых зон k1и k2, если b=60 см. k1 = 2; k2= 4 Плоский волновой фронт интенсивности J0 падает на экран с отверстием, закрытым стеклянной пластиной. Для точки Р на экране пластиной открыты 2 зоны Френеля. В пластине сделана круглая выемка глубиной h и радиусом r (r- радиус первой зоны Френеля). Величина h минимальна, и соответствует максимальной интенсивности в точке Р на экране. Найти интенсивность в точке Р . 16 J0 Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите правильный вариант, если известно что оказались открытыми cемь френелевских зон. 3 Точечный источник света S расположен на расстоянии а перед экраном с круглым отверстием диаметра d. Введите число открытых зон Френеля для точки Р, ориентируясь на вектор амплитуды волны в этой точке АВ. 3 Свет от точечного монохроматического источника S дифрагирует на круглом отверстии D. Параметры a, b и d таковы, что для точки Р открыто 1,5 зоны Френеля. На векторной диаграмме сложения вторичных волн найдите вектор, соответствующий амплитуде в точке Р. AC

Расстояние от центра амплитудной зонной пластинки до ее главного фокуса равно F. Выберите правильное выражение для n-ого кратного фокуса (n=0,1,2...)
F / (2n+1)
Плоская волна падает на экран с прямоугольной щелью ширины d1.При этом в точке Р наблюдается максимально воэможная интенсивность. Затем щель расширяют еще немного и наблюдают следующий максимум. Найдите число открытых зон k1и k2.
k1= 1; k2= 3
Плоская световая волна интенсивностью J0 (длина волны lambda) падает нормально на стеклянную пластину (показатель преломления n) с круглой выемкой глубины h и радиуса R. Для точки Р радиус R соответствует первой зоне Френеля, а величина h - максимальной интенсивности. Найдите hmin.
lambda / 2 (n-1)
Плоская монохроматическая волна (расстояние а велико) с интенсивностью J падает по нормали на круглое отверстие диаметром d. Определите, во сколько раз интенсивность волны в точке Р больше, чем J, если ее амплитуде соответствует вектор АВ, показанный на векторной диаграмме ?
2
На рисунке представлены распределения дифрагированного на щели плоского монохроматического излучения в трех плоскостях Р1,Р2 и Р3.Каков смысл указанной на рисунке дистанции Рэлея R ?
Соответствует одной открытой зоне.
На экране Р наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. Введите число открытых френелевских зон по заданному распределению интенсивности в плоскости экрана вдоль оси х.
3
Точечный монохроматический источник S освещает непрозрачный диск D. На экране P в центре геометрической тени наблюдается светлое пятно (т.н. пятно Пуассона). Выберите все верные утверждения, касающиеся этого пятна.
Пятно появляется, если диском перекрыто любое число зон Френеля.
При увеличении D пятно становится уже и бледнее.
При уменьшении L пятно становится уже и бледнее.
Плоская монохроматическая волна падает нормально на экран с круглым отверстием D. Диаметр отверстия уменьшается в N раз. Найдите новое расстояние b, при котором в точке Р будет наблюдаться та же дифракционная картина, но уменьшенная в N раз.
answer1=b/(N*N)
Плоская световая волна интенсивностью J0 (длина волны lambda) падает нормально на стеклянную пластину (показатель преломления n) с круглой выемкой глубины h и радиуса R. Для точки Р радиус R соответствует первой зоне Френеля, а величина h - максимальной интенсивности. Найдите интенсивность в точке Р.
answer2=9 J0
Амплитуде дифрагированной волны в точке Р соответствует вектор АВ, показанный на фазовой диаграмме. Как изменится интенсивность в точке Р, если диаметр отверстия увеличивают, добиваясь для той же точки амплитуды АС ?
answer5=Вообще не изменится.

Экран с отверстием освещается точечным монохроматическим источником. На втором экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите возможные варианты наблюдаемой картины, если известно что оказалось открытым нечетное число френелевских зон.
1 и 3

На экране Р наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. Введите число открытых френелевских зон по заданному распределению интенсивности в плоскости экрана вдоль оси х.
4
Свет от источника S дифрагирует на круглом отверстии D. Выберите на фазовой диаграмме вектора, соответствующие амплитудам в точке Р, если: 1) отверстие открывает почти 7 первых зон; 2) вместо экрана с отверстием - диск того же диаметра; 3) экрана нет вообще.
answer4=1. АВ, 2. ВС, 3. АС
В точке Р наблюдается дифракция излучения от точечного источника S на круглом отверстии D. Открыто 14 первых френелевских зон. Что произойдет с интенсивностью волны в точке Р, если семь внешних зон закрыть непрозрачным экраном ?
answer5=Увеличится многократно.
Плоский волновой фронт падает на экран с отверстием радиуса R, закрытым стеклянной пластиной (показатель преломления n). Величина R соответствует для точки Р первой зоне Френеля. Найдите минимальную глубину выемки радиуса R /корень квадратный из 2-х, увеличивающую интенсивность в точке Р вдвое.
answer4=h = lambda /12 (n -1)
Амплитуде дифрагированной волны в точке Р соответствует вектор АВ, показанный на фазовой диаграмме. Как будет изменяться интенсивность в точке Р по мере увеличения диаметра отверстия до размера, которому будет соответствовать вектор амплитуды АС ?
Будет сначала возрастать, а затем убывать.

Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Введите номер правильного варианта наблюдаемой картины, если известно что оказались открытыми пять френелевских зон.
1

Плоская монохроматическая волна падает на непрозрачный экран с круглым отверстием. Точка наблюдения Р удаляется вдоль оси x от плоскости экрана в области дифракции Френеля. Выберите все верные утверждения, касающиеся картины дифракции в точке Р.
В центре картины наблюдаются то минимумы, то максимумы.
Число открытых зон Френеля уменьшается.

В точке Р наблюдается дифракция излучения от точечного источника S на круглом отверстии D. Открыто 14 первых френелевских зон. Что произойдет с интенсивностью волны в точке Р, если девять внешних зон закрыть непрозрачным экраном ?
1. АВ, 2. ВС, 3. АС

Наблюдается дифракция плоской монохроматической волны на полубесконечном непроницаемом экране. Введите номер правильного варианта распределения интенсивности света вдоль оси x.
3

Плоский волновой фронт интенсивности J0 падает на экран с отверстием радиуса R, закрытым стеклянной пластиной с выемкой радиуса r=R/корень из2. Величина R соответствует первой зоне Френеля, а h - максимуму интенсивности в точке Р. Найдите интенсивность в точке Р и величину hmin.
8 J0; h =3 lambda /4 (n -1)
Монохроматическая волна интенсивностью J падает на круглое отверстие диаметра d, открывающего для точки наблюдения Р одну зону Френеля. Определите, во сколько раз интенсивность в точке Р больше, чем J ? (амплитуде в точке Р соответствует один из векторов, показанных на фазовой диаграмме).
4,0

Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите правильный вариант, если известно что оказались открытыми четыре френелевских зоны.
2

Точечный монохроматический источник S освещает непрозрачный диск D. На экране P в центре геометрической тени наблюдается светлое пятно (т.н. пятно Пуассона). Определите, что будет происходить с картиной на экране при постепенном увеличении диаметра диска.

Пятно будет бледнеть, оставаясь светлее тени.

Плоская монохроматическая волна падает на непрозрачный экран с круглым отверстием. Точка наблюдения Р перемещается вдоль оси x от плоскости экрана в области дифракции Френеля. Определите правильный вариант изменения интенсивности в точке Р в зависимости от координаты x.
4
Плоская волна падает на экран с прямоугольной щелью ширины d. При этом в точке Р наблюдается самый глубокий минимум. Затем щель расширяют еще на 0,7 мм и наблюдают следующий минимум. Найдите число открытых зон k1и k2, если b=60 см.
k1 = 2; k2= 4

Плоский волновой фронт интенсивности J0 падает на экран с отверстием, закрытым стеклянной пластиной. Для точки Р на экране пластиной открыты 2 зоны Френеля. В пластине сделана круглая выемка глубиной h и радиусом r (r- радиус первой зоны Френеля). Величина h минимальна, и соответствует максимальной интенсивности в точке Р на экране. Найти интенсивность в точке Р .
16 J0



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.