|
|||
Вопрос 2. Методы и задачи дозиметрии. Назначение и принципы работы дозиметров.Вопрос 2. Методы и задачи дозиметрии. Назначение и принципы работы дозиметров. Дозиметрия (ионизирующих излучений) — раздел прикладной ядерной физики, предметом исследования которого является определение физических величин, характеризующих воздействие ионизирующих излучений на среду, и разработка методов и средств для измерения этих величин. В круг задач дозиметрии входят: измерение и расчет доз в полях источников излучений и в биологических объектах (тканевая дозиметрия), измерение активности радиоактивных препаратов и др. Дозиметрия основана на измерении ионизации, которую производит излучение в воздухе или газе, или на измерении энергии излучения, поглощенной средой. Образующиеся при ионизации газовой среды отрицательные и положительные ионы начинают двигаться в электрическом поле к соответствующим электродам, и в цепи возникает электрический ток, величина которого измеряется регистрирующим прибором. Методы измерения поглощенной энергии в плотных средах основаны на ряде физических явлений, сопутствующих прохождению излучений через вещество. Фотографический метод. Этим методом были получены первые сведения о новом виде энергии. Фотопленку можно использовать и для измерения величины доз, так как степень почернения пленки пропорциональна поглощенной энергии. Сцинтилляционный метод основан на регистрации световых вспышек (сцинтилляции), которые испускают возбужденные ионизирующими излучениями атомы и молекулы. Световые вспышки регистрируются фотоэлектронным умножителем , включенным в соответствующую электронную схему. Химический метод дозиметрии заключается в выявлении необратимых химических изменений, происходящих под действием излучений в веществе, чаще всего в водных растворах. В этих целях широко используется реакция превращения двухвалентного железа в трехвалентное (в ферро-сульфатном дозиметре). Регистрацию необратимых химических изменений осуществляют различными физическими или химическими методами. Люминесцентные методы дозиметрии. Под действием ионизирующих излучений в некоторых веществах образуются скрытые центры свечения (люминесценции), которые проявляются при последующем световом (фотолюминесценция) или тепловом (термолюминесценция) воздействии на облученные вещества. При этом свечение регистрируется ФЭУ. Перспективным является использование полупроводников для целей дозиметрии . Наиболее точным, но технически сложным методом дозиметрии является калориметрический,состоящий в прямом измерении тепловой энергии, в которую преобразуется в конечном счете энергия излучения. Особый интерес представляет тканевая дозиметрия; так как непосредственное измерение поглощенных доз в живом организме невозможно, изготовляют тканеэквивалентные фантомы) человека или животных, внутри которых и измеряют излучения одним из вышеописанных способов. Определение активности радиоактивных препаратов, используемых для лечения опухолей, изучение процессов переноса и обмена веществ в организме и др. производится путем измерения числа частиц, испускаемых препаратом в единицу времени. Этот раздел дозиметрии называется радиометрией Вопрос 3. Виды дозиметров и принцип их работы. Воспринимающими устройствами дозиметрических приборов является ионизационные камеры и ионизационные счетчики. Ионизационная камера представляет собой заполненный воздухом замкнутый объем, в котором помещены положительный и отрицательный электроды. Анодом в ней служит токопроводящий слой, катодом - металлический стержень. К электродам подводится ток от источника питания, которое образует в камере электрическое поле. Если ионизирующих лучей нет, то воздух в камере ионизированный и не проводит электрический ток. Под влиянием излучения воздух в камере ионизируется, цепь замыкается и по ней проходит ионизационный ток. Он поступает в электрическую схему прибора, усиливается, преобразуется и изменяется микроамперметром, шкала которого «отградуирована» в рентгенах в час или миллирентгенах в час. Подобные ионизационные камеры применяются в приборах, с помощью которых измеряют мощность дозы гамма - излучения (уровень радиации) на местности. Газоразрядный счетчик представляет собой металлический (или стеклянный) цилиндр, заполненный разреженной смесью инертных газов с небольшими добавками, которые улучшают его работу. Анодом служит тонкая металлическая нить, натянутая внутри корпуса, который является катодом (в стеклянных счетчиков катод - тонкий слой металла, нанесенный на внутреннюю поверхность корпуса.) Газоразрядные счетчиков применяются в приборах, предназначенных для обнаружения и измерения степени загрязненности различных поверхностей радиоактивными веществами. Они также могут использоваться для измерения мощности дозы гамма - излучения (уровня радиации). В зависимости от выполнения задания приборы дозиметрического контроля разделяются на: • Измерители мощности дозы, при помощи которых измеряются уровни (ДП-3Б, КПД-21С, КПД-21Б) • Измерители мощности дозы - ДП-5А, Б, В, КПД-12, при помощи которых микродиапазоны комбинированные приборы; • Измерители поглощения дозы - (ИД-1, ИД-11) (гамма - нейтронные излучения) - это приборы индивидуального дозиметрического контроля, при помощи которых обнаруживают, какую дозу получил человек (персонально), в какой ситуации или за соответствующий период; • Дозиметры - (ДК-02, ДКП-50, ДП-22В, ДП-24) для одного вида излучения; • Газосигнализаторы автоматические (ГСА-12, АСП, ГСП-11, ГС-СОМ), при помощи которых производится автоматический контроль окружающей среды с целью выявления паров отравляющих, радиационных веществ, аэрозолей; • декадные - расчетная установка (ГП-100, ГП-100 АДМ), предназначенная для измерения количества электрических импульсов при выявлении степени зараженности радиационными изотопами воды, продовольствия, воздуха, проб почвы и т. д.
|
|||
|