Хелпикс

Главная

Контакты

Случайная статья





б) обжатием;. в) накаткой;. г) правкой;. д) осадкой;. е) вытяжкой;. ж) раскаткой;. з) чеканкой.



 

2.3 Способы восстановления деталей
Задания для закрепления
1. Целью ремонта деталей является: восстановление всех геометри­ческих размеров детали, формы и расположения поверхностей и обес­печение физико-механических свойств в соответствии с технически­ми условиями на изготовление новой детали.
2. При ремонте автомобилей широко применяются следующие способы восстановления изношенных деталей: механическая обработка; сварка, наплавка и напыление металлов, гальваническая и химическая обработка.
3. Восстановление деталей сваркой и наплавкой возможно следующими способами:
а) Дуговой:

- ручной покрытыми электродами;

- под флюсом;

- в среде углекислого газа;

- неплавящимся электродом (вольфрамовым) в среде аргона;

- вибродуговой;

- широкослойной;

- электроконтактной приваркой ленты ( проволоки).

б) Газовой;

в) Плазменной;

г) Лазерной;


4. Основные достоинства способа восстановления деталей сваркой и наплавкой:
- простотой технологического процесса и применяемого оборудования;

- возможностью восстановления деталей из любых металлов и сплавов;

- высокой производительностью и низкой себестоимостью;

- получением на рабочих поверхностях деталей наращиваемых слоёв практически любой толщины и химического состава (жаропрочные, кислотно-стойкие и т.д.)


5. Восстановление деталей пластическим деформированием возможно следующими
способами:

 а) раздачей;

б) обжатием;

в) накаткой;

г) правкой;

д) осадкой;

е) вытяжкой;

ж) раскаткой;

з) чеканкой.

 

6. Способ пластического деформирования основан на:

 Способ пластического деформирования основан на способности деталей изменять форму и размеры без разрушения путем перераспределения металла под давлением, т.е. основан на использовании пластических свойств металла деталей.
7. Процесс восстановления размеров деталей пластическим деформированием состоит
из следующих операций:

 - подготовка – отжиг или отпуск обрабатываемой поверхности перед холодным или нагрев перед горячим деформированием;

- деформирование – осадка, раздача, обжатие, вытяжка, правка и др.;

- обработка после деформирования – механическая обработка восстановленных поверхностей до требуемых размеров и при необходимости термическая обработка;

- контроль качества – после восстановления детали должны также проверяться на отсутствие трещин.


8. Восстановление деталей слесарно-механической обработкой возможно следующими способами: а) слесарной обработкой;

б) механической обработкой;

в) под ремонтный размер;

г) постановкой дополнительной ремонтной детали.


9. Обработка поверхностей детали под ремонтный размер эффективна в случае, если:


Обработка поверхностей детали под ремонтный размер эффективна в случае, если механическая обработка при изменении размера не приведет к ликвидации термически обработанного поверхностного слоя детали. Тогда у дорогостоящей детали соединения дефекты поверхности устраняются механической обработкой до заранее заданного ремонтного размера (например, шейки коленчатого вала), а другую (более простую и менее дорогостоящую деталь) заменяют новой соответствующего размера (вкладыши).
10. Способ дополнительных ремонтных деталей (ДРД) применяют для:

 Способ дополнительных ремонтных деталей (ДРД) применяют для восстановления резьбовых и гладких отверстий в корпусных деталях, шеек валов и осей, зубчатых зацеплений, изношенных плоскостей.

11. Восстановление деталей гальваническими покрытиями возможно следующими
способами:

 а) железнением;

б) никелированием;

в) меднением;

г) хромированием;

д) цинкованием;

е) кадмированием.


12. Покрытия, восстановленные электролитическим осаждением металлов при ремонте автомобиля, применяются для § для повышения износостойкости;

§ для восстановления изношенных поверхностей деталей (хромирование, железнение и др.);

§ для защиты деталей от коррозии (цинкование, бронзирование, оксидирование, фосфатирование и др.);

§ для защитно-декоративных целей (никелирование, хромирование, цинкование, оксидирование и др.);

§ для специальных целей: пример – улучшение прирабатываемости трущихся поверхностей деталей (меднение, лужение, свинцевание и др.).

Чаще всего цель покрытия является комплексной. Подготовка деталей к покрытию состоит из:

§ механической обработки поверхностей;

§ обезжиривания обработанной поверхности;

§ декапирования.


13. При применении для восстановления деталей способа электролитического осаждения подготовка деталей к покрытию состоит из следующих операций:


пескоструйную обработку; шлифование и полирование.

14. Восстановление деталей газотермическим напылением возможно следующими
способами

а) газоэлектрическим:

- электродуговым;

- плазменным;

- высокочастотным.

б) газопламенным:

- газокислородным;

- газовоздушным.

в) детонационным.

15. В состав пластмассы, используемой при восстановлении деталей с применением
синтетических материалов, входят следующие элементы:

 § наполнители;

§ пластификаторы;

§ отвердители;

§ ускорители;

§ красители и другие добавки.


Контрольные вопросы
1. Опишите классификацию способов восстановления деталей:

Все многообразие методов восстановления, в зависимости от природы дефектов, обычно делят на следующие группы:

обработка резанием и слесарная обработка; сварка и пайка; пластическая деформация; наплавление; диффузионная металлизация, а также напыление; гальванические технологии; химико-термическая обработка (ХТО), а также традиционная термическая обработка; использование композиционных материалов.

 

Классификация способов восстановления в зависимости от характера воздействия на деталь По указанному принципу все операции по восстановлению делятся на три группы: обработка без снятия припусков; обработка деталей со съемом материала; технологические операции, сопряженные с нанесением покрытий и материалов тем или иным способом.

2. Охарактеризуйте способ обработки деталей под ремонтный размер:

Обработка поверхностей детали под ремонтный размер эффективна в случае, если механическая обработка при изменении размера не приведет к ликвидации термически обработанного поверхностного слоя детали. Тогда у дорогостоящей детали соединения дефекты поверхности устраняются механической обработкой до заранее заданного ремонтного размера (например, шейки коленчатого вала), а другую (более простую и менее дорогостоящую деталь) заменяют новой соответствующего размера (вкладыши).

 

 

В этом случае соединению будет возвращена первоначальная посадка (зазор или натяг), но поверхности детали, образующие посадку, будут иметь размеры, отличные от первоначальных. Восстановление деталей под ремонтные размеры характеризуется простотой и доступностью, низкой трудоемкостью (в 1,5-2,0 раза меньше, чем при сварке и наплавке) и высокой экономической эффективностью, сохранением взаимозаменяемости деталей в пределах ремонтного размера. Недостатки способа – увеличение номенклатуры запасных частей и усложнение организации процессов хранения деталей на складе, комплектования и сборки.


3. Охарактеризуйте способ дополнительных ремонтных деталей:

Способ дополнительных ремонтных деталей (ДРД) применяют для восстановления резьбовых и гладких отверстий в корпусных деталях, шеек валов и осей, зубчатых зацеплений, изношенных плоскостей. При восстановлении детали изношенная поверхность обрабатывается под больший (отверстие) или меньший (вал) размер и на нее устанавливается специально изготовленная ДРД: ввёртыш, втулка, насадка, компенсирующая шайба или планка. Крепление ДРД на основной детали производится напрессовкой с гарантированным натягом, приваркой, стопорными винтами клеевыми композициями, на резьбе. При выборе материала для дополнительных деталей следует учитывать условия их работы и обеспечивать срок службы до очередного ремонта. После установки рабочие поверхности дополнительных деталей обрабатываются под номинальный размер с соблюдением требуемой точности и шероховатости.

Заделка трещин в корпусных деталях фигурными вставками. Трещины в корпусных деталях (головках и блоках цилиндров двигателей, картерах коробок передач, задних мостах и других деталях) можно устранить двумя видами фигурных вставок.

Уплотняющие вставки применяют для заделки трещин длиной более 50 мм с обеспечением герметичности как толстостенных, так и тонкостенных деталей. Для тонкостенных деталей используют вставки диаметром 4,8 мм, а для деталей с толщиной стенок 12-18 мм – 6,8 мм. Для установки уплотняющей фигурной вставкисверлят отверстия диаметром 4,8 или 6,8 мм за пределами конца трещины на расстоянии 4-5 или 6-8 мм соответственно. Затем, используя специальный кондуктор, последовательно вдоль трещины сверлят такие же отверстия. Через каждые пять отверстий сверлят отверстия поперек трещины – по два с каждой стороны. Отверстия продувают сжатым воздухом, обезжиривают ацетоном, смазывают эпоксидным составом, устанавливают и расклёпывают фигурные вставки.

Стягивающие вставкииспользуют для стягивания боковых кромок трещины на толстостенных деталях. В деталях сверлят по кондуктору перпендикулярно трещине четыре или шесть отверстий диаметром, соответствующим диаметру вставки, с шагом, большим на 0,1-0,3, и глубиной 15 мм. Перемычку между отверстиями удаляют специальным пробойником в виде пластины шириной 1,8 или 3,0 мм в зависимости от размеров вставки. В паз запрессовывают фигурную вставку, ее расклепывают и зачищают этот участок заподлицо. Качество заделки трещин проверяют на герметичность на стенде в течение 3 минут при давлении 0,4 МПа.

Восстановление резьбовых поверхностей спиральными вставками.Один из способов восстановления изношенной или повреждённой резьбы – это установка резьбовой спиральной вставки. Эти вставки увеличивают надежность резьбовых соединений деталей. Спиральные вставки изготавливают из коррозионно-стойкой проволоки.


4. Опишите особенности способа заделки трещин в корпусных деталях фигурными
вставками.

Заделка трещин в корпусных деталях фигурными вставками. Трещины в корпусных деталях (головках и блоках цилиндров двигателей, картерах коробок передач, задних мостах и других деталях) можно устранить следующими двумя видами фигурных вставок (рис.).
Уплотняющие вставки (рис. а) применяют для заделки трещин длиной более 50 мм с обеспечением герметичности как толстостенных, так и тонкостенных деталей.
Для тонкостенных деталей используют вставки диаметром 4,8 мм, а для деталей с толщиной стенок 12... 18 мм — 6,8 мм. Для установки уплотняющей фигурной вставки сверлят отверстия диаметром 4,8 или 6,8 мм на глубину 3,5 или 6,5 мм за пределами конца трещины на расстояние 4...5 или 5...6 мм соответственно. Затем, используя специальный кондуктор, последовательно вдоль трещины сверлят такие же отверстия. Через каждые пять отверстий сверлят отверстия поперек трещины — по два с каждой стороны. Отверстия продувают сжатым воздухом, обезжиривают ацетоном, смазывают эпоксидным составом, устанавливают и расклепывают фигурные вставки. Вставки диаметром 6,8 мм помещают в отверстие в два ряда.
Стягивающие вставки (рис. б) используют для стягивания боковых кромок трещины на толстостенных деталях. В деталях сверлят по кондуктору перпендикулярно трещине четыре или шесть отверстий (по два или три отверстия с каждой стороны) диаметром, соответствующим диаметру вставки, с шагом, большим на 0,1 ...0,3, и глубиной 15 мм. Перемычку между отверстиями удаляют специальным пробойником в виде пластины шириной 1,8 или 3,0 мм в зависимости от размеров вставки.
5. Опишите особенности способа восстановления резьбовых поверхностей спиральными вставками:

Один из способов восстановления изношенной или поврежденной резьбы — это установка резьбовой спиральной вставки. Эти вставки увеличивают надежность резьбовых соединений деталей, особенно изготовленных из алюминия и чугуна. Спиральные вставки изготавливают из коррозионно-стойкой проволоки ромбического сечения в виде пружинящей спирали (рис. 11.6).

Технологический процесс восстановление резьбовой поверхности включает:

рассверливание отверстия (см. табл. 21.3) с применением накладного кондуктора и снятие фаски (1x45°). Смещение осей отверстий не более 0,15 мм, перекос осей отверстий не более 0,15 мм на длине 100 мм;

нарезание резьбы в рассверленном отверстии детали (см. табл. 21.3). Скорость резания 4... 5 м/мин, частота уплотняющей и стягивающей вставок в деталь: установить резьбовую вставку в монтажный инструмент (рис. 11.7, а); ввести стержень инструмента в резьбовую вставку так, чтобы ее технологический поводок вошел в паз нижнего конца стержня; завернуть вставку в отверстие наконечника инструмента, а затем с

помощью инструмента в резьбовое отверстие детали (рис. 11.7, б); вынуть инструмент и удалить (посредством удара бородка) технологический поводок резьбовой вставки;

контроль качества восстановления резьбы с помощью «проходного» и «непроходного» калибра или контрольного болта. При контроле резьбовая вставка не должна вывертываться вместе с калибром (контрольным болтом).


6. Охарактеризуйте способ восстановления деталей пластическим деформированием:

способ пластического деформирования основан на способности деталей изменять форму и размеры без разрушения путем перераспределения металла под давлением, т.е. основан на использовании пластических свойств металла деталей. Пластическому деформированию могут подвергаться детали в холодном или в нагретом состоянии в специальных приспособлениях на прессах.

Стальные детали твердостью до HRC 30 (это низкоуглеродистые стали, а также детали из цветных металлов и сплавов) обычно деформируют в холодном состоянии без предварительной обработки. При холодном деформировании наблюдается упрочнение металла детали, т.е. происходит наклеп, который повышает предел прочности и твердости металла при одновременном понижении его пластических свойств. Этот процесс требует приложения больших усилий. Поэтому при восстановлении детали часто нагревают.

В нагретом состоянии восстанавливают детали из средне и высокоуглеродистых сталей. При восстановлении деталей необходимо учитывать верхний предел нагрева и температуру конца пластического деформирования металла. Относительно низкая температура конца деформирования металла может привести к наклепу и появлению трещин в металле.


7. Охарактеризуйте способ восстановления деталей сваркой и наплавкой:

На сварку и наплавку приходится от 40 до 80% всех восстановленных деталей.

Такое широкое распространение этих способов характеризуется следующими достоинствами:

- простотой технологического процесса и применяемого оборудования;

- возможностью восстановления деталей из любых металлов и сплавов;

- высокой производительностью и низкой себестоимостью;

- получением на рабочих поверхностях деталей наращиваемых слоёв практически любой толщины и химического состава (жаропрочные, кислотно-стойкие и т.д.)

Нагрев до температуры плавления материалов, приводит к возникновению вредных процессов, которые оказывают негативное влияние на качество восстанавливаемых деталей. К ним относятся металлургические процессы, структурные изменения, образование внутренних напряжений и деформаций в основном металле деталей.

В процессе сварки и наплавки из-за соединения металла с кислородом воздуха происходит его окисление, выгорание легирующих элементов (углерода, марганца, кремния и др.), насыщение наплавленного металла азотом (что является источником снижения пластичности и предела прочности) водородом, а также разбрызгивание металла.

Для защиты от этих отрицательных явлений при сварке и наплавке используют электродные обмазки, флюсы, которые при наплавлении образуют шлак, предохраняющий контакт металла с окружающей средой. С этой же целью применяют и защитные газы.

При сварке и наплавке выделяются углекислый и угарный газы, которые бурно расширяются и являются источником разбрызгивания жидкого металла.

Неравномерный нагрев детали в околошовной зоне (зоне термического влияния) приводит к структурным изменениям в основном металле детали. Механические свойства металла в этой зоне снижаются. Увеличение сварочного тока и мощности сварочной горелки приводит к расширению зоны термического влияния, а скорость сварки (при выборе рационального режима) – к уменьшению.

Из-за неравномерного нагрева, возникают внутренние напряжения деформации в деталях. Если внутренние напряжения превышают предел текучести материала детали, то возникают деформации. Они могут быть значительно снижены путем нагрева деталей перед сваркой и медленного охлаждения после сварки, а также применения специальных приемов сварки и наплавки.

 

8. Опишите особенности способа ручной сварки и наплавки плавящимися электродами:

Ручная сварка и наплавка плавящимися электродами. Параметры режима – это сила тока, напряжение и скорость наплавки. Для получения минимальной глубины проплавления основного металла электрод наклоняют в сторону, обратную направлению наплавки (рис. 103).

Общие потери при наплавке покрытыми электродами с учетом потерь на угар, разбрызгивание и огарки составляют до 30%.

Длина дуги не должна превышать диаметра электрода.


9. Опишите особенности способа газовой сварки и наплавки:

Сущность процесса – это расплавление свариваемого и присадочного металла пламенем, которое образуется при сгорании горючего газа в смеси с кислородом. В качестве горючего газа используют ацетилен, что позволяет обеспечить температуру пламени 3100-3300°С.

Сварку и наплавку осуществляют сварочными горелками. Мощность пламени характеризуется расходом ацетилена, зависящим от номера наконечника горелки.

Угол наклона мундштука горелки к поверхности свариваемого металла зависит от толщины соединяемых кромок изделия и от теплопроводности металла (чем толще металл и чем больше его теплопроводность, тем угол мундштука горелки должен быть больше).

Конец присадочной проволоки держат в восстановительной зоне или в свариваемой ванне.

Существуют два основных способа газовой сварки – правый и левый.

Правый – это когда процесс сварки ведется слева на право (рис. 104 а), горелка перемещается впереди присадочного прутка, а пламя направлено на формирующийся шов. В результате происходит хорошая защита сварочной ванны от воздействия атмосферного воздуха и замедленное охлаждение сварного шва. Такой способ позволяет получить швы высокого качества. Применяется при сварке металла толщиной более 5 мм.

Левый представляет собой процесс сварки который выполняют справа налево (рис.104 б), горелка перемещается за присадочным прутком, а пламя направляется на не сваренные кромки и подогревает их, подготавливая к сварке. Пламя свободно растекается по поверхности металла, что снижает опасность его пережога. Этот способ позволяет получить внешний вид шва лучше, так как сварщик отчетливо видит шов и может сделать его равномерным по высоте и ширине, что особенно важно при сварке тонких листов.


10. Опишите особенности способа дуговой наплавки под флюсом.

Способ широко применяется для восстановления цилиндрических и плоских поверхностей деталей. Это механизированный способ наплавки, при котором совмещены два основных движения электрода, т.е. его подача по мере оплавления к детали и перемещение вдоль сварочного шва.

Сущность способа наплавки под флюсом заключается в том, что в зону горения дуги автоматически подаются сыпучий флюс и электродная проволока. Под действием высокой температуры образуется газовый пузырь, в котором существует дуга, расплавляющая металл. Часть флюса плавится, образуя вокруг дуги эластичную оболочку из жидкого флюса, который защищает расплавленный металл от окисления, уменьшает разбрызгивание и угар. При кристаллизации расплавленного металла образуется сварочный шов.

Преимущества способа:

- возможность получения покрытия заданного состава;

- экономичность в отношении расхода электроэнергии и электродного материала;

- независимость качества наплавленного металла от квалификации исполнителя;

- лучшие условия труда сварщиков ввиду отсутствия ультрафиолетового излучения;

- возможность автоматизации технологического процесса.

Недостатки способа:

- значительный нагрев детали;

- невозможность наплавки деталей диаметром менее 40 мм (из-за стекания наплавленного металла и трудности удержания флюса на поверхности детали);

- сложность применения для деталей сложной конструкции.


11. Опишите особенности способа наплавки в среде углекислого газа:

Этот способ восстановления деталей отличается от наплавки под флюсом тем, что в качестве защитной среды используется углекислый газ.

Сущность способа наплавки в среде углекислого газа заключается в том, что электродная проволока из кассеты непрерывно подается в зону сварки. Ток к электродной проволоке подводится через мундштук и наконечник, расположенные внутри газоэлектрической горелки. При наплавке металл электрода и детали перемешиваются. В зону горения дуги под давлением 0,05-0,2 МПа по трубке подается углекислый газ, который вытесняя воздух, защищает расплавленный металл от вредного воздействия кислорода и азота воздуха. (рис. 106).

Достоинства способа:

- меньший нагрев деталей;

- возможность наплавки при любом пространственном положении детали;

- более высокая производительность по площади покрытия (на 20-30%);

- возможность наплавки деталей диаметром менее 40 мм;

- отсутствие трудоемкой операции по отделению шлаковой корки.

Недостатки способа:

- повышенное разбрызгивание металла (5-10%);

- необходимость применения легированной проволоки для получения наплавленного металла с требуемыми свойствами;

- открытое световое излучение дуги.


12. Опишите особенности способа аргоновой сварки:

. Этот способ наплавки широко используется для восстановления алюминиевых сплавов и титана. Сущность способа – электрическая дуга горит между неплавящимся электродом и деталью. В зону сварки подается защитный газ – аргон, а присадочный материал – проволока (из того же материала, что и деталь). Аргон надежно защищает расплавленный металл от окисления кислородом воздуха. Наплавленный металл получается плотным, без пор и раковин.

Преимущества способа:

- высокая производительность процесса (в 3-4 раза выше, чем при газовой сварке);

- высокая механическая прочность сварного шва;

- небольшая зона термического влияния;

- снижение потерь энергии дуги на световое излучение, т.к. аргон задерживает ультрафиолетовые лучи.

Недостатки способа:

- высокая стоимость процесса (в 3 раза выше, чем при газовой сварке).


13. Опишите особенности сварки чугунных деталей:

Многие корпусные детали изготавливают из серого, высококачественного и ковкого чугуна, который является трудносвариваемым материалом. У деталей из чугуна сваркой заделывают трещины и отверстия, присоединяют отколотые части детали, наплавляют износостойкие покрытия.

Наличие в чугуне значительного содержания углерода и низкая его вязкость вызывают значительные трудности при восстановлении деталей из этого материала. Быстрое охлаждение чугуна приводит к образованию в околошовной зоне твердых закалочных структур. В этих зонах металл тверд и хрупок. Выгорание углерода и кремния в процессе сварки приводит к тому, что сварочный шов получается пористым и загрязненным шлаковыми включениями, которые появляются в результате неполного выделения газов и шлаков из-за быстрого перехода чугуна из жидкого состояния в твердое.

При восстановлении чугунных деталей применяют горячий и холодный способ сварки.

Горячая сварка чугуна – это процесс, который предусматривает нагрев детали (в печи или другими способами) до температуры 650-680°С. Температура детали во время сварки должна быть не ниже 500°С.

Такие температуры позволяют:

- освободить свариваемую деталь от внутренних напряжений;

- задержать охлаждение сварочной ванны, что способствует выравниванию состава металла;

- предупредить появление сварочных напряжений и трещин.

Для деталей с большой жесткостью (блок цилиндров и другие корпусные детали) при сварке обязателен общий нагрев.

Лучшие результаты при горячей сварке чугуна даёт ацетилено-кислородное пламя с присадочным материалом из чугуна. При сварке необходимо применять флюс.

Газовая сварка чугуна цветными сплавами без подогрева детали. Выполняют в сочетании с дуговой сваркой и широко применяют в ремонтном производстве для сварки трещин на обрабатываемых поверхностях корпусных деталей. Присадочный материал – латунь. Температура плавления латуни (880-950°С) ниже температуры плавления чугуна, поэтому её можно применять для сварки, не доводя чугун до плавления и не вызывая в нем особых структурных изменений и внутренних напряжений. Использование этого процесса позволяет получить сварочные швы плотные, легко поддающиеся обработке.

Холодная сварка чугуна. При этом процессе деталь не нагревают (возможен подогрев не свыше 400°С для снятия напряжения и предупреждения возникновения сварочных напряжений). Сварочная ванна имеет небольшой объём металла и быстро твердеет. Способ получил более широкое применение по сравнению с горячей сваркой из-за простоты выполнения. В зоне сварного шва происходит отбеливание и закалка с одновременным ростом внутренних напряжений, которые могу привести к образованию трещин.

Холодная сварка применяется для устранения трещин и заварки пробоин в тонкостенных корпусных и крупногабаритных чугунных деталях, которые требуют последующей механической обработки и эксплуатируются под нагрузкой при тепловом воздействии.


14. Опишите особенности сварки деталей из алюминия и его сплаво:

- очень плохая сплавляемость алюминия (температура плавления алюминия 658°С) из-за образования на его поверхности тугоплавкой окисной плёнки, температура плавления которой 2050°С. Окислы снижают механическую прочность деталей. Для их удаления применяют флюсы;

- при нагреве до 400-450°С алюминий сильно теряет свою прочность, и деталь может разрушиться даже от легкого удара;

- алюминий, как и чугун, не имеет пластического состояния и при нагреве сразу переходит из твердого состояния в жидкое.

Для уменьшения внутренних напряжений целесообразно подогревать детали перед сваркой до температуры 250-300°С и медленно охлаждать после сварки.


15. Опишите особенности технологического процесса осаждения металлов:

электролитическое осаждение металлов происходит в электролите и на электродах при прохождении через электролит постоянного тока. Восстановление поверхностей этим способом наращивания не вызывает структурные изменения в деталях, позволяет устранять не значительные износы. Процесс восстановления легче поддается механизации и автоматизации.
16. Каково назначение хромирования изделий? Перечислите преимущества и недостатки хромирования:

Хромирование получило широкое распространение как для восстановления деталей и повышения их износостойкости, так и для декоративных и противокоррозионных целей.

Преимуществаэлектролитического хрома:

 

 

§ металл серебристо-белого цвета с высокой микротвердостью;

§ металл обладает высокой износостойкостью, особенно в абразивной среде (в 2…3 раза по сравнению с закаленной сталью);

§ металл обладает устойчивостью в отношении химических и температурных воздействий, причем высокая коррозионная стойкость сочетается с красивым внешним видом;

§ металл имеет низкий коэффициент трения (на 50% ниже, чем у стали и чугуна);

§ металл имеет высокую прочность сцепления покрытия с поверхностью детали.

Недостаткихромирования и хромового покрытия:

§ низкий выход металла по току (8…42%);

§ небольшая скорость отложения осадков;

§ высокая агрессивность электролита;

§ большое количество ядовитых выделений, образующихся при электролизе;

§ толщина отложения покрытия практически не превышает 0,3 мм;

§ гладкий хром плохо удерживает смазочное масло.

Специальные процессы хромирования. Пористое хромирование применяют для повышения износостойкости деталей, работающих при больших давлениях и температурах и недостаточной смазке. Пористый хром представляет собой покрытие, на поверхности которого специально создается большое количество пор или сетка трещин, достаточно широких для проникновения в них масла. Его можно получить механическим, химическим, электрохимическим способами. Наиболее широкое применяют электрохимический способ, который заключается в том, что хром осаждается при режиме блестящего хромирования, обуславливающем появление в покрытии сетки микротрещин.


17. Охарактеризуйте процесс железнения деталей:

Процесс железнения представляет собой осаждение металла на ремонтируемую поверхность детали в водных растворах солей железа. Он нашел широкое применение при восстановлении деталей с износом от нескольких микрометров до 1,5 мм на сторону. Производительность процесса железнения примерно в 10 раз выше, чем при хромировании, а выход металла по току равен 80…95%.

Железнение проводят в стальных ваннах, внутренние стенки которых облицовывают кислотостойкими материалами (кислотостойкая резина, керамика, фарфор и др.).

Один из существенных недостатковпроцесса железнения – это большое количество водорода в осадке, который отрицательно влияет на механические свойства восстановленных деталей.


18. Каково назначение цинкования и никелирования изделий?

Этот процесс применяют главным образом для защиты деталей из черного металла от коррозии. В ремонтном производстве его чаще всего используют для защиты от коррозии крепежных материалов. Толщина цинковых покрытий 15…30.мкм.
19. Опишите особенности способа восстановления деталей с применением синтетических материалов.

Применение полимерных материалов при ремонте автомобилей по сравнению с другими способами позволяет снизить трудоёмкость восстановления на 20..30%, себестоимость ремонта на 15…20%, расход материалов – на 40…50%. Это обусловлено следующими особенностями их использования:

§ не требуется сложного оборудования и высокой квалификации рабочих;

§ возможностью восстановления деталей без разборки агрегатов;

§ отсутствие нагрева деталей;

§ не вызывает снижения усталостной прочности восстановленных деталей;

§ во многих случаях позволяет не только заменить сварку или наплавку, но и восстанавливать детали, которые другими способами восстановить не возможно или опасно с точки зрения безопасности труда;

 

 


§ позволяет миновать сложные технологические процессы нанесения материала и его обработку.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.