Хелпикс

Главная

Контакты

Случайная статья





Классификация сетей



 

 

 

Классификация сетей

Компьютерные сети классифицируются по двум признакам: общие (пользовательские) и специальные (профессиональные).

Общие (пользовательские) признаки:

  • по архитектуре;
  • по масштабу администрирования;
  • по уровню однородности;
  • по территориальному признаку;
  • по скорости передачи;
  • по способу подключения;
  • по пpедоставляемому сеpвису (службам).

Классификация сетей по архитектуре:

  • LAN – Local Area Network ( ЛВС ) – Локальные вычислительные сети: Ethernet, FastEthernet, ARCnet, TokenRing , LokalTalk (Apple) , WLAN, FDDI*.
  • WAN – Wide Area Network ( РВС ) – Региональные и глобальные вычислительные сети: FDDI*, ATM, FrameRelay.
  • MAN – Metropolian Area Network ( TВС ) – Городские (территориальные) вычислительные сети.. Это понятие в настоящее вpемя уже не используется. Оно вытеснено понятием WAN.
  • GAN – Global Area Network ( ГВС ) – Глобальные вычислительные сети.Это понятие в настоящее вpемя уже не используется. Оно вытеснено понятием WAN.

Классификация по масштабу администрирования:

  • Офисные сети (сети отделов).
  • Учрежденческие сети (сети кампусов).
  • Корпоративные сети.
  • Сети общего доступа (Internet).

Классификация по уровню однородности:

  • Одноранговые.
  • «Клиент-сервер»
    – Клиент – объект (компьютер или программа), запрашивающий некоторые услуги.
    – Сервер – объект (компьютер или программа), предоставляющий некоторые услуги.
  • Гибридные.
  • Гетерогенные, гомогенные.

Классификация по скорости передачи данных (единицы измерения скорости передачи ( боды, бит/c, bps, cps, Мб/с , МБ/с):

  • коммуникационные модемные каналы: 1200, 2400, 4800, 9600, 14400, 19200, 33600, 56000 bps;
  • физическая скорость на коммутируемых телефонных каналах = ( 1200-3000 bod);
  • цифровые модемы 64Кб/с, 128 Кб/с, 256Кб/с, 1,0Мб/с, 5Мб/.с, 10Мб/с;
  • среднескоростные сети 1, 2, 8, 10, 16, 20 Мб/с;
  • скоростные сети 100 Мб/с, 1.5 Гб/с.

Классификация по типу передающей cреды:

  • проводная (коаксиал, витая паpа, оптоволокно);
  • беспроводная (радиоканал, ИК каналы, микроволновые каналы).

Специальные (профессиональные) признаки:

  • по топологии сети;
  • по способу управления;
  • по типу передающей cреды;
  • по назначению.

Классификация по топологии сети:

  • сети с топологией «Общая шина»;
  • сети с топологией «Звезда»;
  • сети с топологией «Кольцо»;
  • сети с древовидной топологией;
  • Топология сети - это логическая схема соединения компьютеров каналами связи. Чаще всего в локальных сетях используется одна из трех основных топологий: моноканальная (шинная), кольцевая или звездообразная.сети со смешанной топологией.

· Шинная топология. При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного для всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети. На концах коммуникационного пути размещаются терминаторы, служащие для гашения сигнала.

· Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции. При повреждении кабеля в любом месте сети вся сеть становится неработоспособной. Максимальная пропускная способность таких сетей составляет 10 Мбит/с. Такая пропускная способность недостаточна для современных видео- и мультимедийных приложений, поэтому почти повсеместно применяются сети со звездообразной архитектурой.

· Достоинствами шинной топологии являются низкая стоимость, простота построения и наращивания сети. Недостатки - низкая скорость работы сети и малая надежность.

 

· Кольцевая топология. При кольцевой топологии сети рабочие станции связаны одна с другой по кругу: последняя рабочая станция связана с первой, при этом коммуникационная связь замыкается в кольцо.

· Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географическое расположение рабочих станций далеко от формы кольца (например, в линию).

· Сообщения в такой сети циркулируют регулярно по кругу. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять «в дорогу» по кабельной системе одно за другим. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

· Основная проблема, которая возникает в сетях кольцевой топологии, заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Подключение новой рабочей станции требует краткосрочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно определяется исключительно расстоянием между двумя рабочими станциями.

· Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий. Отдельные звезды включаются с помощью специальных концентраторов. В зависимости от числа рабочих станций и длины кабеля между рабочими станциями применяют активные или пассивные концентраторы.

· Активные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключительно разветвительным устройством (максимум на три рабочие станции). Каждой рабочей станции присваивают соответствующий ей адрес, по которому передается управление (от старшего к младшему и от самого младшего к самому старшему).

 

· Звездообразная топология. Этот тип топологии предполагает, что головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например в электронной почте RelCom.

· Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети. Для построения сети со звездообразной архитектурой в центре сети необходимо разместить концентратор. Его основная функция - обеспечение связи между компьютерами, входящими в сеть, т. е. все компьютеры, включая файловый сервер, не связываются непосредственно друг с другом, а присоединяются к концентратору. Сети со звездообразной топологией поддерживают прогрессивные технологии Fast Ethernet и Gigabit Ethernet, что позволяет увеличить пропускную способность сети.

· При использовании топологии этого типа пропускная способность сети определяется вычислительной мощностью узла сети гарантируется для каждой рабочей станции. Коллизий (столкновений данных) в такой сети не возникает.

· Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабеля высокие, особенно когда центральный узел географически расположен не в центре топологии. При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи, потому что к новому месту необходимо прокладывать отдельный кабель из центра сети.

· Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями происходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями Частота запросов на передачу информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

· Достоинством является также и то, что повреждение одного из кабелей приводит к выходу из строя только того луча «звезды», где находится поврежденный кабель, при этом остальная часть сети остается работоспособной.

· Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть «узким местом» вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети.

· Недостатком этой архитектуры является более высокая стоимость, более сложная структура, а также особенности наращивания, заключающиеся в том, что концентраторы имеют ограниченное количество портов (соединительных элементов) для подключения компьютеров. Это необходимо учитывать при оценке перспектив расширения сети.

· СРЕДА ПЕРЕДАЧИ ДАННЫХ

· В современных сетях в качестве такой среды чаще всего используются различные виды кабелей и радиосвязь в различных диапазонах.

· В локальных сетях широкое распространение получила именно кабельная связь. Кабель представляет собой проводник, помещенный в изолирующие материалы. Наиболее часто используются витая пара, коаксиальный кабель и оптико-волоконные линии.

· Рассмотрим типы наиболее распространенных кабельных соединений.

· Витая пара - это наиболее распространенное и дешевое кабельное соединение, представляющее собой пару скрученных проводов. Она обеспечивает достаточную скорость передачи данных (до 100 Мбит/с), проста в монтаже и нетребовательна в эксплуатации. Монтаж сети на витой паре ведется только по звездообразной топологии. Единственным недостатком применения этого вида кабеля является небольшая длина луча «звезды» (до 100 м), что необходимо учитывать при построении сетей в многоэтажных зданиях, а также в больших офисах.

· Коаксиальный кабель имеет среднюю цену, хорошо помехозащитен и применяется для связи на большие расстояния (несколько километров). Скорость передачи данных по коаксиальному кабелю от 1 до 10 Мбит/с, а в некоторых случаях может достигать 50 Мбит/с.

· Коаксиальный кабель используется для передачи информации в широкополосном диапазоне частот. Примером коаксиального кабеля является Ethernet-кабель с волновым сопротивлением 50 Ом.. Его называют также толстый Ethernet. Вследствие помехозащищенности он является дорогой альтернативой обычным коаксиальным кабелям. Средняя скорость передачи данных 10 Мбит/с. Максимально доступное расстояние без повторителя не превышает 500 м, а общее расстояние сети Ethernet - около 3000 м

· Более дешевым, чем Ethernet-кабель, является соединение Cheapernet-кабель, или, как его называют, тонкий Ethernet. Скорость передачи данных в сетях с этим кабелем составляет 10 Мбит/с Вычислительные сети на этом кабеле имеют небольшую стоимость и минимальные затраты при наращивании. Дополнительное экранирование не требуется. Расстояние между рабочими станциями может составлять максимум 300 м. Общее расстояние для сети на Cheapernet-кабеле составляет около 1000 м.

· Коаксиальный кабель в настоящее время применяется довольно редко из-за крайне малых для современных сетей скоростей передачи данных, а также трудоемкого монтажа самого кабеля.

· Оптико-волоконные линии (стекловолоконный кабель) являются наиболее дорогими. Скорость распространения информации по ним достигает 100 Мбит/с (на экспериментальных образцах оборудования - до 200 Мбит/с). Допустимое расстояние между компьютерами - более 50 км. Внешнее воздействие помех на передачу информации практически отсутствует.

· Такие сети применяются при передаче информации на большие расстояния без повторителей. Оптико-волоконные линии обладают противоподслушивающими свойствами. Поскольку оптическое волокно является исключительно дорогим решением по стоимости как оборудования, так и монтажа, оно применяется довольно редко, только при большой удаленности абонентов сети друг от друга либо в местах большой загрузки сети.

· В радиосетях в качестве среды передачи данных используется радиосигнал. Такое решение применимо в местах, где прокладка кабельных каналов невозможна или нецелесообразна. Для построения такой сети используются несколько радиостанций, обменивающихся данными. Достоинства таких сетей очевидны - это гибкость применения и простота построения. Однако стоимость подобных устройств исключительно высока. К тому же для применения любого радиопередающего оборудования необходимо оформлять ряд документов, разрешающих его использование в данной местности. В связи с этим эти устройства применяются достаточно редко.

· ТИПЫ КОМПЬЮТЕРНЫХ СЕТЕЙ

· Компьютер, подключенный к локальной компьютерной сети, является рабочей станцией или сервером в зависимости от выполняемых им функций. Эффективно эксплуатировать мощности локальной сети позволяет применение технологии «Клиент-Сервер». В этом случае приложение делится на две части: клиентскую серверную. Один или несколько наиболее мощных компьютеров сети конфигурируются как серверы приложений: на них выполняются серверные части приложений. Клиентские части выполняются на рабочих станциях. Именно здесь формируются запросы к серверам приложений и обрабатываются полученные результаты. Существуют несколько признаков, по которым можно определить, работает компьютер в составе сети или автономно. Если компьютер является сетевой рабочей станцией, то:

· • после включения ПК появляются соответствующие сообщения;

· • для входа в сеть необходимо пройти процедуру регистрации;

· • после регистрации в распоряжении пользователя оказываются новые дисковые накопители, принадлежащие файловому серверу.

· Различают сети с одним или несколькими выделенными серверами и сети без выделенных серверов, называемые одноранговыми сетями.

· Локальные сети с выделенным сервером

· В сетях с выделенным сервером именно ресурсы сервера, чаще всего дисковая память, доступны всем пользователям. Серверы, разделяемым ресурсом которых является дисковая память, называются файл-серверами (файловыми серверами). Файл-сервер обычно используется администратором сети и не предназначен для решения прикладных задач. Поэтому он оснащается недорогим монохромным дисплеем. Файловые серверы содержат несколько быстродействующих дисковых накопителей. Сервер должен быть высоконадежным, поскольку выход его из строя приведет к остановке работы всей сети.

· Сетевое программное обеспечение, управляющее ресурсами файлового сервера и предоставляющее к нему доступ всех абонентов сети, - это сетевая операционная система (например, WINDOWS-NT SERVER). Как правило, основная часть этой системы находится в файловом сервере, а ее небольшая часть размещается в компьютерах пользователей, получивших название рабочих станций. На рабочих станциях может использоваться любая операционная система, и должна быть запущена программа - драйвер, обеспечивающий доступ к локальной сети.

· При выборе компьютера на роль файлового сервера необходимо учитывать следующие факторы:

· · быстродействие процессора;

· · скорость доступа к файлам, размещенным на жестком диске;

· · емкость жесткого диска;

· · объем оперативной памяти;

· · уровень надежности сервера.

· Требуемое высокое быстродействие процессора файлового сервера обусловлено тем, что во время работы большой ЛВС он обрабатывает огромное количество запросов на обслуживание файлов, а на это затрачивается значительное процессорное время. Для того чтобы ускорить обслуживание запросов и создать у пользователя впечатление, что именно он является единственным клиентом сети, необходим быстродействующий процессор.

· Наиболее важным компонентом файлового сервера является дисковый накопитель. На нем хранятся все файлы пользователей сети. Быстрота доступа, емкость и надежность накопителя во многом определяют, насколько эффективным будет использование сети Значительного повышения производительности сервера можно добиться, увеличивая его оперативную память. Для работы в сети с выделенным файл-сервером желательна память объемом более 256 Мбайт. Если сервер снабжен оперативной памятью достаточного объема, то он имеет возможность именно в оперативной памяти хранить те области дискового пространства, к которым пользователи обращаются наиболее часто. Такой метод хорошо известен, часто применяется на обычных ПК и называется кэшированием жесткого диска. Если поступает обращение к файлу, данные которого находятся в кэше, сервер может передать информацию, не обращаясь к диску. В результате достигается значительный временной выигрыш.

· Сетевой контроллер, установленный на сервере, - это устройство, через которое проходят практически все данные, циркулирующие в локальной сети, поэтому к быстродействию этого контроллера предъявляются повышенные требования. Пути удовлетворения этих требований - в повышении разрядности сетевого контроллера и увеличении объема его оперативного запоминающего устройства.

· Важной функцией файлового сервера является управление сетевым принтером. Сетевой принтер подключается к файловому серверу, но пользоваться им можно с любой рабочей станции. Каждый пользователь может отправить на сетевой принтер материалы, предназначенные для печати. Регулировать очередность доступа к файловому принтеру будет файловый сервер.

· На рабочих станциях устанавливается обычная операционная система, например Windows. Рабочая станция - это индивидуальное рабочее место пользователя. Полноправным владельцем всех ресурсов рабочей станции является пользователь. В то же время ресурсы файлового сервера разделяются между всеми пользователями. В качестве рабочей станции может использоваться ПК, конфигурация которого определяется теми приложениями, которые используются на этом компьютере.

· ТИПЫ КОМПЬЮТЕРНЫХ СЕТЕЙ

· Компьютер, подключенный к локальной компьютерной сети, является рабочей станцией или сервером в зависимости от выполняемых им функций. Эффективно эксплуатировать мощности локальной сети позволяет применение технологии «Клиент-Сервер». В этом случае приложение делится на две части: клиентскую серверную. Один или несколько наиболее мощных компьютеров сети конфигурируются как серверы приложений: на них выполняются серверные части приложений. Клиентские части выполняются на рабочих станциях. Именно здесь формируются запросы к серверам приложений и обрабатываются полученные результаты. Существуют несколько признаков, по которым можно определить, работает компьютер в составе сети или автономно. Если компьютер является сетевой рабочей станцией, то:

· • после включения ПК появляются соответствующие сообщения;

· • для входа в сеть необходимо пройти процедуру регистрации;

· • после регистрации в распоряжении пользователя оказываются новые дисковые накопители, принадлежащие файловому серверу.

· Различают сети с одним или несколькими выделенными серверами и сети без выделенных серверов, называемые одноранговыми сетями.

· Локальные сети с выделенным сервером

· В сетях с выделенным сервером именно ресурсы сервера, чаще всего дисковая память, доступны всем пользователям. Серверы, разделяемым ресурсом которых является дисковая память, называются файл-серверами (файловыми серверами). Файл-сервер обычно используется администратором сети и не предназначен для решения прикладных задач. Поэтому он оснащается недорогим монохромным дисплеем. Файловые серверы содержат несколько быстродействующих дисковых накопителей. Сервер должен быть высоконадежным, поскольку выход его из строя приведет к остановке работы всей сети.

· Сетевое программное обеспечение, управляющее ресурсами файлового сервера и предоставляющее к нему доступ всех абонентов сети, - это сетевая операционная система (например, WINDOWS-NT SERVER). Как правило, основная часть этой системы находится в файловом сервере, а ее небольшая часть размещается в компьютерах пользователей, получивших название рабочих станций. На рабочих станциях может использоваться любая операционная система, и должна быть запущена программа - драйвер, обеспечивающий доступ к локальной сети.

· При выборе компьютера на роль файлового сервера необходимо учитывать следующие факторы:

· · быстродействие процессора;

· · скорость доступа к файлам, размещенным на жестком диске;

· · емкость жесткого диска;

· · объем оперативной памяти;

· · уровень надежности сервера.

· Требуемое высокое быстродействие процессора файлового сервера обусловлено тем, что во время работы большой ЛВС он обрабатывает огромное количество запросов на обслуживание файлов, а на это затрачивается значительное процессорное время. Для того чтобы ускорить обслуживание запросов и создать у пользователя впечатление, что именно он является единственным клиентом сети, необходим быстродействующий процессор.

· Наиболее важным компонентом файлового сервера является дисковый накопитель. На нем хранятся все файлы пользователей сети. Быстрота доступа, емкость и надежность накопителя во многом определяют, насколько эффективным будет использование сети Значительного повышения производительности сервера можно добиться, увеличивая его оперативную память. Для работы в сети с выделенным файл-сервером желательна память объемом более 256 Мбайт. Если сервер снабжен оперативной памятью достаточного объема, то он имеет возможность именно в оперативной памяти хранить те области дискового пространства, к которым пользователи обращаются наиболее часто. Такой метод хорошо известен, часто применяется на обычных ПК и называется кэшированием жесткого диска. Если поступает обращение к файлу, данные которого находятся в кэше, сервер может передать информацию, не обращаясь к диску. В результате достигается значительный временной выигрыш.

· Сетевой контроллер, установленный на сервере, - это устройство, через которое проходят практически все данные, циркулирующие в локальной сети, поэтому к быстродействию этого контроллера предъявляются повышенные требования. Пути удовлетворения этих требований - в повышении разрядности сетевого контроллера и увеличении объема его оперативного запоминающего устройства.

· Важной функцией файлового сервера является управление сетевым принтером. Сетевой принтер подключается к файловому серверу, но пользоваться им можно с любой рабочей станции. Каждый пользователь может отправить на сетевой принтер материалы, предназначенные для печати. Регулировать очередность доступа к файловому принтеру будет файловый сервер.

· На рабочих станциях устанавливается обычная операционная система, например Windows. Рабочая станция - это индивидуальное рабочее место пользователя. Полноправным владельцем всех ресурсов рабочей станции является пользователь. В то же время ресурсы файлового сервера разделяются между всеми пользователями. В качестве рабочей станции может использоваться ПК, конфигурация которого определяется теми приложениями, которые используются на этом компьютере.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.