Хелпикс

Главная

Контакты

Случайная статья





Занятие №11. Выполненные работы присылать на почту: na-ta-lin@mail.ru



Занятие №11

Дисциплина: Астрономия

 

Тема:  "Методы астрономических исследований"

Цель: знакомство обучающихся с методами астрономических исследований.

1. Изучите новый материал на сайтах или с помощью презентаций и видео:

1. http://rabochaya-tetrad-uchebnik.com/astronomiya/uchebnik_astronomiya_11_klass_voroncov-veljyaminov_straut/index.html#prettyPhoto[gallery3]/0/ - учебник, стр. 8-18

2. https://www.youtube.com/watch?v=Rh9ZSyf_up4

3. https://www.youtube.com/watch?time_continue=217&v=-tCc-2ar2_U&feature=emb_logo

2. Выполнение заданий:

1. Составить классификационную схему методов астрономических исследований.

2. Максимум излучения в спектре Ригеля приходится на длину волны 193 нм, а у Капеллы – на длину волны 483 нм. Какова температура этих звезд?
3. Чему равен диаметр звезды, если ее температура 104 К, а светимость 6× 103 L¤ ?

 

Критерии оценивания:

отметка «5» ставится, если выполнены все задания без ошибок;

отметка «4», если выполнены 2 задания;

отметка «3»,если выполнено 1 задание.

Выполненные работы присылать на почту: na-ta-lin@mail.ru

 

Теория:

Анализ электромагнитного излучения космических объектов дает астрономам свыше 90 % сведений об их физической природе, основных характеристиках и особенностях, о космических явлениях и процессах.

До середины XIX века астрономия была исключительно оптической: все наблюдения велись в узком (400-760 нм) диапазоне длин волн видимого света, затем исследования распространились на инфракрасный и ультрафиолетовый диапазоны, а к середине ХХ века астрономы могли исследовать почти весь диапазон теплового излучения. Космонавтика позволила вести изучение космических объектов во всем диапазоне длин волн электромагнитного излучения.

Современная астрономия является всеволновой наукой.

Наземные исследования электромагнитного излучения космических объектов имеют свои особенности, определяемые прозрачностью земной атмосферы для разных длин волн электромагнитного излучения (рис. 84).

Земная атмосфера имеет два "окна прозрачности": в диапазоне радиоволн длиной от 1 мм до 15-30 м и в оптическом диапазоне (0,3 мкм < l < 1,5-2 мкм). Остальное излучение поглощается или рассеивается молекулами и атомами воздуха.

 

Энергия квантов света ( ) тем выше, чем меньше длина волны. Поэтому, хотя человеческий глаз видит в диапазоне от 4× 10-7 до 7,6× 10-7 м, лучше всего он воспринимает волны желто-зеленой части спектра (l = 555 нм) - часть спектра солнечного излучения, на которую приходится максимум спектральной плотности энергетической светимости Солнца и наименее поглощаемой земной атмосферой. С уменьшением освещенности земной поверхности - в сумерках, ночью, - глаз становится более чувствительным к более энергичным лучам сине-фиолетовой части спектра (l = 507 нм). Тренированный глаз способен различать цвета (участки спектра) с разностью длин волн в 2× 10-9 м.

По той же причине земные растения равнин окрашены в зеленый цвет, а высокогорные имеют голубовато-синий оттенок: чем больше солнечной энергии падает на их листья, тем интенсивнее идет процесс фотосинтеза.

Сведения о применении спектрального анализа для изучения физических характеристик космических объектов привлекают внимание учеников своей высокой результативностью, интригуют их, создают положительные мотивы к изучению материала по физике и астрономии. К началу изучения раздела школьники уже должны изучить материал о спектральном анализе в рамках соответствующего раздела физики; однако желательно в ходе небольшой беседы повторить и актуализировать знания учащихся, задавая им вопросы: "Что такое спектр? Какие виды спектров вы знаете? Какие объекты, в каком состоянии дают линейчатые? Полосатые? Сплошные спектры? Как по спектру объекта определить его химический состав? Температуру? Скорость и направление движения? В случае массового затруднения следует дать ученикам необходимые разъяснения.

Открытие основ спектрального анализа в середине XIX века произвело подлинную революцию в астрофизике. Спектральный анализ позволил установить основные физические характеристики космических тел: температуру, скорость движения по лучу зрения, наличие магнитного поля, химический состав и т. д., позволил судить о процессах, протекающих в атмосферах и на поверхности космических тел.

Первые спектральные наблюдения космических тел производились визуально, при помощи спектроскопа, вмонтированного в окулярный узел телескопа. Затем спектры космических тел стали фотографироваться.

В настоящее время ученые могут изучать спектры космических объектов на всем протяжении шкалы электромагнитных волн: от радио- до g -диапазона, исследуя не только тепловое излучение тел, испускаемое веществом за счет внутренней энергии движения его молекул и атомов, при переходе электронов с одного энергетического уровня на другой и их рекомбинации (10-9 < l <10-3 м), но и нетепловое излучение (l< 10-9 м и l > 10-3 м), возникающее при ускоренном движении электронов, атомном распаде и других процессах.

Механизм и особенности излучения определяются из характера непрерывного спектра.

Основное число спектральных линий лежит в пределах диапазона длин волн оптического излучения (10-11-10-2 м). С помощью специальных светофильтров ученые могут "вырезать" определенный участок спектра и подробно исследовать излучение в очень узком (до 1-2× 10-9 м) диапазоне длин волн, свойственном какому-либо отдельному химическому элементу. По спектру космических тел можно определить их температуру.

 

Позакону Вина: длина волны, на которую приходится максимум спектральной плотности энергетической светимости, обратно пропорциональна температуре тела: , где в = 2,898× 10-3 м× К - постоянная Вина.

Для многих космических объектов максимум энергетической светимости лежит в невидимой части спектра. У планетных тел он находится в основном в инфракрасной и радиоволновой части спектра: для Земли l max » 0,01 мм; для высокотемпературных звезд может смещаться в ультрафиолетовую область и т.д.

По ширине спектральных линий можно судить о светимости космических тел.

По спектру космических тел можно определить их химический состав. Сравнивая положение линий (полос) поглощения или излучения в спектре космического тела и эталонных спектрах различных химических элементов и соединений, ученые определяют качественный химический состав, а по яркости (интенсивности) линий и полос судят о количественном (процентном) содержании каждого элемента или соединения.

По спектру космических тел можно судить о степени ионизации и состоянии его вещества, концентрации вещества, давлении и массе газа в туманностях и звездах.

По спектру космических тел можно судить о наличии и мощности их магнитных полей, воздействующих на электромагнитные волны; в результате каждая линия в спектре "расщепляется" на 2 или более линии-близнеца (эффект Зеемана-Штарка).

По спектру космических объектов, наблюдаемых как единое целое даже в мощнейшие телескопы, можно установить, какие из них на самом деле являются системами космических тел и какие тела с какими характеристиками входят в эти системы: спектры их просто "накладываются" один на другой.

По спектру космических тел можно определить характеристики их движения: наличие и скорость вращения, направление и скорость перемещения в пространстве относительно наблюдателя, а в ряде случаев и расстояние до них.

По принципу Доплера для оптики, при сближении наблюдателя с источником излучения длины волн излучения укорачиваются (линии в спектре равномерно сдвигаются) в фиолетовую часть спектра; при удалении объекта спектральные линии сдвигаются в красную часть спектра.

Вращение космических тел обнаруживается по регулярному смещению линий в оба конца от среднего положения. По лучевым скоростям отдельных областей внутри галактик из их спектров узнают о внутренних движениях и распределении масс вещества; по интенсивности эмиссионных линий - о количестве горячего газа, особенностях его распределения и скоростях движения внутри галактики. Для далеких галактик величина "красного смещения" спектральных линий пропорциональна их удаленности: , где l 0 - длина волны спектральной линии при неподвижном источнике, vл- скорость по лучу зрения.

Первые фотографические наблюдения космических объектов начались в 40-х годах прошлого века сразу после изобретения фотографии. Астрономы высоко ценят преимущества астрофотографии перед визуальными наблюдениями: интегральности - способности фотоэмульсии постепенно накапливать световую энергию (с помощью обычного фотоаппарата на установке с часовым механизмом за 15 минут экспозиции можно получить снимки звезд до 9m, за 1 час - до 11m); моментальности; панорамности; объективности - на нее не влияют личные особенности наблюдателя. Фотография является своеобразным документом: многие астрономические открытия были сделаны или уточнены, доказаны с помощью фотографий, сняты десятки лет назад, поэтому негативы астрофотонаблюдений хранятся в специальных архивах обсерваторий. Обычная фотоэмульсия более чувствительна к сине-фиолетовому излучению, однако в настоящее время астрономы применяют при съемке космических объектов фотоматериалы, чувствительные к различным частям спектра электромагнитных волн, не только к видимым, но и к инфракрасным и ультрафиолетовым лучам. Чувствительность современных фотоэмульсий составляет десятки тысяч единиц ISO. Широкое применение в астрономии в последние десятилетия получила также киносъемка и видеозапись, применение телевидения.

Телескопы, предназначенные для проведения фотографических наблюдений, называются астрографами.

Одним из основных методов астрофизических исследований является астрофотометрия, определяющая энергетические характеристики объектов путем измерения энергии их электромагнитного излучения. Основными понятиями астрофотометрии являютсяблеска и звездной величины небесного светила.

Напоминаем, что определяемая звездная величина зависит от спектральной чувствительности приемника излучения. Вводим понятия:

Визуальная звездная величина (mv) определяется прямым наблюдениями и отвечает спектральной чувствительности человеческого глаза (максимум чувствительности вблизи l ~ 555 мкм).

Фотографическая звездная величина (mр) определяется измерением освещенности светилом на фотопластинке (при фотографических наблюдениях), чувствительной к сине-фиолетовым и ультрафиолетовым лучам.

Болометрическая звездная величина (mв) определяется прибором болометром и отвечает полной, просуммированной по всему спектру излучения, мощности излучения светила. "Нулевая" болометрическая величина (mв = 0m) равна световому потоку 2,54× 10-8 Вт/м3 и создает освещенность 2,77× 10-7 Лк.

Для протяженных, имеющих большие угловые размеры объектов определяется интегральная (общая) звездная величина, равная сумме блеска его частей.

Для сравнения энергетических характеристик космических объектов, удаленных на разные расстояния от Земли, ведено понятие абсолютной звездной величины.

Абсолютная звездная величина (М) - звездная величина, которой обладало бы светило на расстоянии 10 парсек от Земли:

, где p - параллакс светила, r - расстояние от светила. 10 пк = 3,086× 1017 м.

Абсолютная звездная величина ярчайших звезд-сверхгигантов около -10m.

Абсолютная звездная величина Солнца + 4,96m.

До середины XIX века фотометрия космических объектов была исключительно визуальной: для измерения световых характеристик космических объектов использовался человеческий глаз.

В визуальных фотометрах блеск светила сравнивается с яркостью искусственного источника света, изменяемого с помощью дымчатого клина или системы поляризаторов. Точность измерений достигает 0,02m.

В фотографической фотометрии измеряются размеры и степень почернения негативного изображения космического объекта, с точностью до 0,1m-0,2m.

С начала ХХ века применяются фотоэлектрические фотометры, обеспечивающие точность измерения до 0,1m. Принцип их действия основан на применении светочувствительных фотоэлементов.

Основным инструментом современной астрофотометрии являются фотоэлектрические умножители (ФЭУ).

В ФЭУ поток квантов света, падающий на фотокатод К, выбивает из него электроны (явление внешнего фотоэффекта), ускоряемые электрическим полем и попадающих на эмиттер Э1, выбивая из него новые электроны, которые ускоряются и падают на второй эмиттер и т. д.; поток электронов падает на анод, возникший электрический ток регистрируется гальванометром. Точность измерений составляет свыше 0,01m (до 0,003m).

Электрофотометры способы уловить разницу в блеске менее 0,001m (рис. 87).

Напоминаем принятое в физике (фотометрии) понятие светимости и применяем его для описания энергетических характеристик космических объектов:

Светимость (L) - количество энергии, излучаемой поверхностью светила в единицу времени. Светимость звезд выражается в абсолютных (энергетических) единицах или в сравнении со светимостью Солнца (L¤ или LÄ ).

, L¤ = 3,86× 1033 эрг/с.

Светимость светил зависит от их размеров и температуры излучающей поверхности. В зависимости от приемников излучения различают визуальную, фотографическую и болометрическую светимость светил.

Светимость светила связана с видимой и абсолютной звездной величиной светила:

Следует отметить, что возможность определения ряда физических характеристик звезд (массы, размеров, светимости и т.д.) несколькими независимыми способами (на основе фотометрических данных, изучения спектров и т.д.) позволяет проверять и уточнять вышеупомянутые параметры, свидетельствует как об истинности и объективности и единстве законов физики для всей известной нам части Вселенной.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.