Хелпикс

Главная

Контакты

Случайная статья





Солнце- ближайшая звезда. Энергия и температура Солнца. Строение атмосферы Солнца»



 

Лекция 12

«Солнце- ближайшая звезда. Энергия и температура Солнца. Строение атмосферы Солнца»

План

1 Солнце ближайшая звезда

2 Размеры, масса солнца

3 Температура Солнца и состояние вещества на солнце

4 Строение Атмосферы Солнца

5Солнечная активность

Цель: Изучить строение Солнца- ближайшей звезды., её атмосферы

  Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обя­зан Солнцу своим существованием. Солнце — не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).

    Издавна у разных народов Солнце было объектом покло­нения. Его считали самым могущественным божеством. Культ непобедимого Солнца был одним из самых распро­страненных (Гелиос — греческий бог Солнца, Аполлон — бог Солнца у римлян, Митра — у персов, Ярило — у славян и т. д.). В честь Солнца воздвигали храмы, слагали гимны, приносили жертвы. Ушло в прошлое религиозное поклоне­ние дневному светилу. Сейчас ученые исследуют природу Солнца, выясняют его влияние на Землю, работают над про­блемой применения практически неиссякаемой солнечной энергии.

         Солнце — это наша звезда. Изучая Солнце, мы узнаем о многих явлениях и процессах, происходящих на других звездах и недоступных непосредственному наблюдению из-за огромных расстояний, которые отделяют нас от звезд.

Наблюдения Солнца требуют большой осторожности. Нельзя смотреть на Солнце, не защитив глаза очень плотным (темным) свето­фильтром! Но даже со светофильтром не рекомендуется смотреть на Солнце в школьный телескоп. Лучше устано­вить на окулярном конце телескопа экран с листом белой бумаги и рассматривать изображение Солнца на экране. Это позволит увидеть на Солнце темные пятна (солнечные пятна) и светлые участки (факелы), которые замет­нее вокруг пятен вблизи края солнечного диска. На совре­менных обсерваториях для наблюдения Солнца применяют телескопы специальных конструкций — солнечные телескопы

 

Размеры, масса и светимость Солнца.Радиус Солнца в 109 раз, а объем примерно в 1 300 000 раз больше соот­ветственно радиуса и объема Земли. Велика и масса Солнца. Она примерно в 330 000 раз больше массы Земли и почти в 750 раз больше суммарной массы движущихся вокруг него планет.

Энергия, получаемая Землей от Солнца, характеризуется солнечной постоянной. Солнечной постоянной называется величина, определяемая полной энергией, кото­рая падает в 1 с на площадку1 м2, расположенную перпен­дикулярно солнечным лучам вне земной атмосферы на сред­нем расстоянии Земли от Солнца.

Для измерения солнечной постоянной на высокогорных станциях определяют количество теплоты, которое получает вода, налитая в специальные сосуды, от зачерненного метал­лического диска, нагреваемого солнечными лучами. В ре­зультате тщательных измерений, выполненных с учетом по­глощения видимого, инфракрасного и ультрафиолетового из­лучения в земной атмосфере, нашли, что солнечная посто­янная равна 1400 Вт/м2 (более точное значение несколько меньше). Измерения солнечной постоянной проводились на протя­жении многих лет. Оказалось, что значение солнечной по­стоянной практически не меняется. Значит, полная энергия, излучаемая Солнцем в единицу времени, постоянна. Если умножить солнечную постоянную на площадь сферы, радиус которой равен среднему расстоянию Земли от Солнца, то получится общая энергия, излучаемая Солнцем в единицу времени (L ). L — это светимость Солнца (или мощность его излучения):

 

L ≈ 4 • 1026 Вт.

Температура Солнца и состояние вещества на Солнце. Чтобы выяснить, в каком состоянии находится ве­щество на Солнце, необходимо прежде всего знать температуру Солнца. Существуют различные способы определения температуры Солнца, все они основаны на физических зако­нах, открытых на Земле и действующих во всей доступ­ной наблюдениям части Вселенной. Один из способов опре­деления температуры Солнца заключается в следующем. Мы знаем светимость Солнца . Известен и радиус Солнца , а следовательно, и площадь видимой поверхности Солнца . Зная это, вычислим энергию, излучаемую единицей площади поверхности Солнца в единицу времени, ε. Оче­видно, что

 

.

С другой стороны, энергия, излучаемая в единицу вре­мени с единицы поверхности, пропорциональна четвертой степени абсолютной температуры:

 

закон Стефана Больцмана), где σ — коэффициент пропор­циональности, равный 5,67•10-8 Вт/(м2•К4).

Из формул (26) и (27) следует, что

 

, (28)

тогда

.

Подставляя числовые значения входящих в формулу (28´) величин, находим: Т≈6000 К. Полученную таким ме­тодом температуру называют эффективной температурой.

Рис. 68. Распределение энергии в спектре Солнца и абсолютно черных тел различной температуры.

Мыприменили закон Стефана — Больцмана, считая, что Солнце излучает как некоторое идеальное (его называют черным) тело, хотя на самом деле это не совсем так. Абсолютно черное тело — это идеальный поглотитель излу­чения (оно полностью поглощает весь падающий на него поток излучения) и идеальный излучатель (оно излучает в диапазоне всех длин волн). Все реальные тела, излучающие энергию, включая Солнце и другие звезды, лишь с опреде­ленной степенью точности можно принимать за абсолютно черные тела. Исследование свойств вещества, из которого состоят видимые наружные слои Солнца, показывает, что это вещество действительно очень хорошо поглощает из­лучение (чем и оправдывается применение формулы (27)). На рисунке 68 показана зависимость энергии, излучаемой Солнцем и другими источниками излучения, от длины волны. Из рисунка видно, что, чем выше температура, тем меньше длина волны ( ), соответствующая максимуму излучаемой энергии. Более точно эта зависимость выражается законом Вина:

 

, (29)

 

где — длина волны в метрах; T — абсолютная температура в кельвинах. Максимум излучения Солнца приходится на длину волны м (отсюда желтый цвет Солнца).

При температуре 6000 К вещество находится на Солнце в газообразном состоянии, причем атомы некоторых химиче­ских элементов ионизованы. С глубиной температура растет (достигает в центре Солнца 1,5 • 107 К), а вместе с тем уве­личивается число ионизованных атомов. Поэтому основное состояние, в котором находится вещество на Солнце, — это плазма, а Солнце это раскаленный плазменный шар.

Условно в атмосфере Солнца выделяют три основных слоя: фотосферу (самый нижний слой), хромосферу и корону.

1. Фотосфера. Доступная непосредственному наблюдению светящаяся «поверхность» Солнца называется фото­сферой. Никакой «поверхности» в обычном смысле этого слова Солнце, конечно, не имеет. На самом деле фото­сфера представляет собой нижний слой солнечной атмо­сферы, толщина которого 300—400 км. Именно она излу­чает практически всю приходящую к нам солнечную энер­гию, так как из-за непрозрачности вещества фотосферы сол­нечное излучение из более глубоких слоев Солнца к нам уже не доходит и их увидеть невозможно. Плотность фото­сферы не превышает порядка 10-4 кг/м3, а число атомов преобладающего в фотосфере водорода — порядка 1017 в объ­еме 1 см3. Температура в фотосфере растет с глубиной, в среднем она близка к 6000 К.

Рис. 69. Участок фотосферы Солнца.

Нарисунке 69 показан участок фотосферы, сфотографи­рованный с помощью телескопа, поднятого на стратостате. На нем видно крупное солнечное пятно и множество зерен (гранул). Гранулы ярче и, следовательно, горячее, чем окружающие его участки фотосферы. Размеры гранул неоди­наковы и составляют в среднем несколько сотен километ­ров. Время существования отдельных гранул — около 8 мин. Непрерывно появляющиеся и исчезающие гранулы свиде­тельствуют о том, что вещество, из которого состоит фото­сфера, находится в движении. Один из видов движений в фотосфере и подфотосферных слоях — вертикальный подъем и опускание вещества. Такое колебательное движение свя­зано с конвекцией: начиная с некоторой глубины (примерно 0,3 радиуса Солнца) вещество на Солнце перемешивается, подобно воде в сосуде, подогреваемой снизу. Гранулы — это верхушки конвективных потоков, проникающих в фото­сферу. Гранулы всегда наблюдаются на всей поверхности Солнца, которую иногда сравнивают с кипящей рисовой ка­шей. Другие детали фотосферы (пятна, факелы) появляются лишь время от» времени.

Еще задолго до изобретения телескопа люди замечали на неярком заходящем Солнце или на Солнце, видимом ск­возь легкие облака, темные пятна. Прежде не только не знали, что представляют собой пятна, но и не допускали мысли о том, что пятна находятся на Солнце. Лишь теперь, спустя три с половиной столетия с тех пор, как Гали­лей доказал, что пятна — это реальные образования на по­верхности Солнца, начинает выясняться их физическая при­рода.

Солнечные пятна значительно крупнее гранул. Диаметры наибольших пятен достигают десятков тысяч километров. Пятна — непостоянные, изменчивые детали фотосферы, су­ществующие от нескольких дней до нескольких месяцев. Иногда на Солнце не бывает пятен совсем, а иногда одно­временно наблюдаются десятки крупных пятен. Многолетние наблюдения пятнообразовательной деятельности Солнца по­казали, что имеются циклические колебания числа пятен. Средняя продолжительность цикла составляет примерно 11 лет (рис. 70).

Рис. 70. 11-летний цикл солнечной активности. Рис. 71. Группа солнечных пятен.

Центральнаячасть пятна — ядро (или тень) — ок­ружена волокнистой полутенью (см. рис. 69). Вблизи края солнечного диска круглое пятно видно как эллиптиче­ское, а совсем близко от края диска — как узкая полоска полутени. Это можно объяснить тем, что пятно представ­ляет собой коническую воронку, глубина которой примерно 300—400 км. Пятна кажутся темными лишь по контрасту с фотосферой. На самом деле температура ядра (самой холод­ной части пятна) около 4300 К, т. е. выше температуры электрической дуги, на которую, как известно, невозможно смотреть без защитных очков. Линии в спектре пятен за­метно расщеплены. Это явление объясняется тем, что веще­ство пятен подвержено действию сильных магнитных полей. Обычно пятна наблюдаются группами (рис. 71). Пятно в группе, которое располагается первым по направлению вра­щения Солнца, называется головным, последнее пятно в группе — хвостовым. Головные и хвостовые пятна имеют противоположную полярность, например головные — северный магнитный полюс, а хвостовые — южный, т. е. в целом группа пятен напоминает гигантский магнит. Магнит­ное поле пятен в тысячи раз превосходит общее магнитное поле Солнца. Поэтому солнечные пятна подобны «магнит­ным островам» в фотосфере Солнца. Замечательно, что в со­седних 11-летних циклах группы пятен изменяют свою полярность. Например, если в данном 11-летнем цикле все го­ловные пятна групп в северном полушарии Солнца имели северный магнитный полюс, то в следующем цикле север­ный магнитный полюс будет у хвостовых пятен.

     Магнитное поле пятен — одна из наиболее важных ха­рактеристик. Именно с магнитным полем связана и причина появления солнечных пятен. Дело в том, что сильное маг­нитное поле способно замедлить конвекцию плазмы. В ме­стах, где конвекция замедлена, на поверхность поступает меньше энергии, там образуются более холодные и темные участки фотосферы — солнечные пятна.

     Фотосферные факелы — детали более светлые (а значит, и более горячие), чем фотосфера. Если группа пятен нахо­дится вблизи края солнечного диска, то вокруг нее обычно видно множество факелов — факельное поле. Факелы возни­кают незадолго до появления солнечных пятен и суще­ствуют в среднем в три раза дольше пятен. В местах, где наблюдаются факелы, на поверхность Солнца выносится бо­лее горячее вещество, чем в других участках фотосферы. Это связано с местным усилением конвекции в подфотосферных слоях.

2. Хромосфера.В моменты полных солнечных затмений хорошо видны внешние области атмосферы Солнца — хромосфера (розового цвета) и серебристо-жемчужная корона. Яркость хромосферы и короны во много раз меньше яркости фотосферы. Из-за рассеяния солнечного света в земной атмосфере эти слабосветящиеся внешние обо­лочки не удается видеть вне затмения без специальных при­способлений.

Хромосфера простирается до высоты 10—14 тыс. км. В ее самых нижних слоях температура около 5000 К, а затем, по мере подъема над фотосферой, она начинает постепен­но расти, достигая в верхних слоях атмосферы (2•104— 5•104) К.

Рис. 72. Участок хромосферы над солнечным пятном.

Внезатмения хромосферу можно наблюдать, если выде­лить очень узкий участок спектра и получить изображение Солнца в монохроматическом свете, длина волны которого соответствует какой-нибудь одной спектральной линии, на­пример, водородной линии Нα. Тогда можно увидеть, что хромосфера состоит из темных и светлых узелков, образую­щих сетку. Размеры ячеек хромосферной сетки значительно превосходят размеры гранул фотосферы, достигая 30 — 50 тыс. км. Яркость хромосферы неодинакова. Наиболее яр­кие ее участки (хромосферные факелы) располо­жены над фотосферными факелами и пятнами (рис. 72).

В хромосфере наблюдаются самые мощные и быстро раз­вивающиеся процессы, называемые вспышками. В ходе развития вспышки сначала увеличивается яркость не­большого участка хромосферы, но затем становится яркой область, охватывающая десятки миллиардов квадратных ки­лометров (рис. 73). Слабые вспышки исчезают через 5—10 мин, а самые мощные продолжаются несколько часов. Не­большие вспышки происходят на Солнце по нескольку раз в сутки, мощные наблюдаются значительно реже. Обычно вспышки появляются над пятнами, особенно над теми, ко­торые быстро изменяются. По характеру явления (стремительность развития, огромное энерговыделение — до 1025— 1026 Дж) вспышки представляют собой взрывные процессы, при которых освобождается энергия магнитного поля сол­нечных пятен. Вспышки сопровождаются мощным ультра­фиолетовым, рентгеновским и радиоизлучением. В межпла­нетное пространство выбрасываются электрически заряжен­ные частицы (корпускулы).

Рис. 73. Развитие солнечной вспышки. Рис. 74. Протуберанец на Солнце.

На краю солнечного диска хорошо видны проту­беранцы (рис. 74) — гигантские яркие выступы или арки, как бы опирающиеся на хромосферу и врывающиеся в солнечную корону. Спокойные протуберанцы существуют несколько недель и даже месяцев. Вещество протуберанцев поглощает и рассеивает идущее снизу излучение, а потому, проецируясь на яркий диск Солнца, протуберанцы выглядят как темные волокна. В отличие от спокойных протуберан­цев, часто наблюдаются протуберанцы, для которых харак­терны очень быстрые движения и выбросы веществ в ко­рону.

3. Солнечная корона.Внутренние области короны, удаленные от фотосферы на расстояние до одного радиуса Солнца, можно наблюдать не только во время солнечных затмений, но и вне затмения с помощью коронографа — специального телескопа, в фокусе объектива ко­торого ставится зачерненный диск («искусственная Луна»). Коронографы устанавливают в горах на высоте не ниже 2000 м над уровнем моря, где солнечное излучение значи­тельно меньше рассеивается земной атмосферой.

Рис. 75. Вид Солнца во время полного затмения. Рис. 76. Изменение вода солнечной короны.

Форма короны не остается постоянной (рис. 76). В годы, когда на поверхности Солнца много пятен, корона почти круглая. Когда же пятен мало, корона сильно вытянута в плоскости экватора Солнца. Корона неоднородна: в ней на­блюдаются лучи, дуги, отдельные сгущения вещества, полярные «щеточки» (короткие прямые лучи, наблюдаемые у полюсов) и т. д. Детали короны неразрывно связаны с пят­нами и факелами, а также с явлениями, происходящими в хромосфере. Все детали короны вращаются с той же угло­вой скоростью, что и расположенные под ними участки фо­тосферы.

Как далеко простирается корона? По фотографиям, по­лученным во время затмений, корону удается проследить на расстоянии до нескольких солнечных радиусов от края Солнца. Отдельные выбросы солнечной плазмы, которые как бы входят в состав сверхкороны Солнца, достигают земной орбиты. Сверхкорона была открыта радиоастрономи­ческими методами. Огромная протяженность короны объяс­няется большими скоростями входящих в нее частиц, а значит, и высокой температурой короны. Этот вывод подтверж­дает исследование спектра короны. Ряд линий в спектре короны оставался загадочным вплоть до 40-х гг. Оказалось, что эти линии принадлежат многократно ионизованным ато­мам хорошо известных на Земле элементов, например ато­мам железа, лишенным 13 электронов. Такая высокая иони­зация в очень разреженном веществе короны возможна при температуре не менее 106 К. Следовательно, наблюдая ко­рону, можно изучать в космической лаборатории высоко­температурную разреженную плазму в естественных условиях.

   Поскольку средняя температура фотосферы около 6000 К, то она своим излучением не может нагреть солнеч­ную корону до более высокой температуры. Согласно одной из гипотез, конвективные движения газа внутри Солнца соз­дают сжатия и разрежения (волны), которые переносят энергию из внутренних слоев Солнца в его атмосферу. Энергия волнового движения нагревает вещество хромосферы и короны. Разреженный газ хромосферы и короны излучает мало и, получая большой приток энергии снизу, сильно нагревается.

4. Солнечная активность. Комплекс нестационарных образований в атмосфере Солнца (пятна, факелы, про­туберанцы, вспышки и др.) называется солнечной актив­ностью. Так, солнечные пятна всегда связаны с фотосферными факелами, вспышки и протуберанцы в большинстве случаев образуются над «возмущенной» фотосферой и т. д. Области на Солнце, где наблюдаются пятна, факелы, вспышки, протуберанцы и другие проявления солнечной активности, называются активными областями (или центрами активности). Как мы видели, центры активности, зарождаясь на некоторой глубине под фотосферой, простираются далеко в солнечную корону. Связующее звено между различными ярусами центров активности — магнит­ное поле.

   Не только появление пятен, но и солнечная активность в целом имеет 11-летнюю цикличность. В годы максимума солнечной активности на Солнце много центров активности (возмущенное Солнце). В годы минимума центров ак­тивности мало (спокойное Солнце). Необычным был максимум предыдущего (22-го) цикла солнечной активности. Он отличался высокой активностью (в частности, большим числом пятен) и продолжительностью (растянутостью на несколь­ко лет — примерно с 1989 по1992 г.).

 

Задания : 1 Каков химический состав Солнца? 2Опишите строение солнечной атмосферы. 3.что такое солнечная активность? 4 Какие явления на зеле связаны с солнечной активностью? 5. Создать презентацию Основные характеристики солнца

 

Список литературы:

1. Астрономия. Базовый уровень. 10-11 класс: учебник / В.М. Чаругин.. – М.: Просвещение, 2018.

2. Астрономия. -10-11 класс. Методическое пособие к учебнику В.М. Чаругин.. – М.: Просвещение, 2018.

 

3. Н.Н. Гомулина. Открытая астрономия/ Под ред. В.Г. Сурдина. – Электронный образовательный ресурс. http://www.college.ru/astronomy/course/content/index.htm

4. В.Г. Сурдин. Астрономические задачи с решениями/ Издательство ЛКИ, 2017 г.

5. Вселенная в вопросах и ответах. Задачи и тесты по астрономии и космонавтике. В.Г. Сурдин. 2017

6. http://astro.murclass.ru/Levitan/text/20.htm

7. https://v-kosmose.com/

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.