Хелпикс

Главная

Контакты

Случайная статья





Комментарии 4 страница



Команда, возглавляемая Гансом Шелером (который открыл ген Oct4 в 1989 году), показала, что избыточная экспрессия Oct4 во время перепрограммирования ухудшает качество ИПСК. По сравнению с OSKM (Oct4, Sox2, Klf4 и c-Myc), которые показывают патологические модели импринтинга и дифференцировки, перепрограммирование SKM (Sox2, Klf4 и c-Myc) генерирует ИПСК с высоким потенциалом развития (почти в 20 раз выше, чем у OSKM) эквивалентно эмбриональным стволовым клеткам, что доказано по их способности генерировать мышей полностью состоящих из ИПСК посредством метода тетраплоидной комплементации эмбрионов[114][115]. Перепрограммировать клетки в ИПСК без использования Oct4 удалось и другой группе исследователей[116]

Важным преимуществом ИПСК перед ЭСК является то, что они могут быть получены из клеток взрослого организма, а не из эмбриона. Поэтому стало возможным получать ИПСК от взрослых и даже пожилых пациентов[11][117][118][119]. Перепрограммирование соматических клеток в ИПСК приводит к их омоложению о чём свидетельствуют данные исследования теломеров— концевых участков хромосом состоящих из коротких следующих друг за другом повторов эволюционно консервативной последовательности ДНК. Выяснилось, что перепрограммирование приводит к удлинению теломеров и их нормальному укорочению по мере дифференцировки ИПСК обратно в фибробласты[120]. Таким образом, при индуцированной плюрипотенции восстанавливается эмбриональная длина теломеров[121], а значит, увеличивается потенциальное число делений клетки[122][123], ограниченное так называемым лимитом Хайфлика (Hayflick limit). Более того омолаживаются и митохондрии клетки при этом восстанавливается характерный для молодых клеток уровень дыхания[124] Поэтому технологию получения ИПСК следует рассматривать как способ радикального омоложения[125]. Из-за диссонанса в стадии развития омоложенных клеток и окружающих их старых клеток реципиента, инъекция пациенту его же собственных ИПСК, обычно приводит к иммунной реакции[126], что может быть использовано в медицинских целях[127], или образованию опухолей типа тератомы[128]. Одной из причин иммуногенности аутологичных ИПСК и ЭСК считается группа из 9 генов (Hormad1, Zg16, Cyp3a11, Lce1f, Spt1, Lce3a,Chi3L4, Olr1, Retn), синтез которых повышен в тератомах, полученных из этих клеток[129][130][131] Очевидно, некоторые клетки, дифференцированные из ИПСК и ЭСК, продолжают синтезировать эмбриональные изоформы белков[132] и неадекватно интерпретируют сигналы окружающих их клеток реципиента. В связи c этим следует отметить, что образование тератомы из плюрипотентных стволовых клеток может быть вызвано низкой активностью фермента PTEN, способствующей выживанию, в процессе дифференцировки, небольшой популяции (не превышающей 0,1-5 % от общей численности клеток) высоко онкогенных клеток карциномы, инициирующих тератомы. Выживание этих инициирующих тератомы клеток связано с недостаточной репрессией Nanog, а также с повышением метаболизма глюкозы и холестерина.[133] Эти, инициирующие образование тератом, клетки характеризуются также более низким соотношением p53/p21 по сравнению с неонкогенными клетками.[134]

Недавно методом отбора удалось найти небольшие молекулы (цитотоксические селективные ингибиторы плюрипотентных стволовых клеток человека), которые предотвращают образование тератомы у мышей после трансплантации им плюрипотентных стволовых клеток человека. Самое мощное и селективное из этих соединений — PluriSIn #1, вызывало ингибирование стеароил-КоА десатуразы (ключевого фермента в биосинтезе олеиновой кислоты), что в конечном итоге приводило к апоптозу плюрипотентных стволовых клеток. С помощью этой молекулы удается выборочно удалить из культуры недифференцированные клетки.[135][136]. Ещё одной молекулой избирательно удаляющей недифференцированные клетки является STF-31,[137] являющийся ингибитором GLUT1.[138] Эффективной стратегией избирательного устранения плюрипотентных клеток, которые способны дать начало тератоме является ингибирование характерных для этих клеток антиапоптотических факторов, таких как сурвивин или Bcl10. Обработкой малыми молекулами, которые могут ингибировать эти антиапоптотические факторы, можно добиться селективного удаления подобных клеток вызвав их апоптоз. В частности, одной обработки смешанной популяции химическими ингибиторами сурвивина (такими как, например, кверцетин или YM155) достаточно чтобы вызвать избирательную и полную гибель недифференцированных клеток, вызванную накоплением р53 в митохондриах. Этого, по мнению авторов исследования, достаточно, чтобы предотвратить образование тератомы после трансплантации клеток полученных из ИПСК[139]. Тем не менее, маловероятно, что какая либо, пусть даже самая изощренная, предварительная очистка[140], способна обезопасить подсадку ИПСК или ЭСК, так как при избирательном удалении плюрипотентных клеток, они вновь довольно быстро возникают путём превращения дифференцированных клеток обратно в стволовые (к обратному переходу может в частности подтолкнуть гипоксия[141]), что приводит к образованию опухоли[142][143][144]. Это может быть связано с нарушением регуляции осуществляемой микро РНК let-7 по отношению к её мишени — белку Nr6a1 (известному также как ядерный фактор зародышевых клеток — GCNF), являющемуся эмбриональным репрессором транскрипции генов плюрипотентности, который необходим для правильной дифференцировки индуцированных плюрипотентных клеток.[145][146] Обнаружена также малая молекула названная Дисплюригеном (Displurigen), которая воздействуя на белок теплового шока HSPA8 (Heat shock 70 kDa protein 8), необходимый для связывания OCT4 с ДНК, способна вывести клетку из состояния плюрипотентности[147]. Ещё один способ предотвратить образование тератомы — это вызвать в пересаживаемой клетке ИПСК гиперэкспрессию гена CREG[148]

Использование ИПСК для клеточной терапии пока ограничено.[149] Тем не менее, они могут быть использованы для целого ряда иных целей — включая моделирование болезней, скрининг (селективный отбор) лекарств, проверку токсичности различных препаратов[150]. Важными факторами для получения высококачественных ИПСК являются определённые небольшие молекулы, способствующие сохранению геномной целостности, образующихся при перепрограммировании ИПСК, путём ингибирования двухцепочечных разрывов ДНК и активации гена Zscan4, содействующего процессам репарации ДНК[151]. Перепрограммирование вызывает репликативный стресс, который можно снизить повысив уровень чекпоинт киназы 1 (CHK1), благодаря чему повышается качество и эффективность образования ИПСК. Кроме того добавление во время перепрограммирования нуклеозидов позволяет снизить повреждения ДНК и число геномных перестроек в получаемых ИПСК[152]

Интересно отметить, что ткани, выращенные из ИПСК, помещенных в «химерные» эмбрионы на ранних стадиях развития мыши, практически не вызывают иммунного ответа (после того, как эмбрионы выросли во взрослых мышей) и пригодны для аутологичной трансплантации,[153][154] причем даже в том случае когда ИПСК получены от очень старых животных[155]. В то же время, полное перепрограммирование взрослых клеток в тканях у мышей in vivo путём временной активации факторов Oct4, Sox2, Klf4 и с-Мус, приводит к образованию в различных органах множества тератом[74]. Смотри рисунок[75]. Более того, частичное перепрограммирование клеток в ИПСК in vivo показало, что неполное перепрограммирование приводит к эпигенетическим изменениям (нарушению репрессии Поликомб целей и изменению метилирования ДНК) в клетках, которые ведут к развитию рака[156]

Индуцируемый ген клеточного самоубийства iCasp9 был сконструирован из такролимус (FK506) связывающего домена димеризации FKBP12 с мутацией F36V, повышающей его способность к связыванию индуцирующей малой молекулы; линкерной последовательности аминокислот (Ser-Gly-Gly-Gly-Ser), которая обеспечивает гибкость конструкции, и человеческого гена Casp9, в котором удален домен связывания каспазы ΔCasp9. Благодаря такой конструкции димеризация генноинженерного белка iCasp9, необходимая для активации ферментативной активности, происходит только при наличии синтетической малой молекулы (например, AP1903), вызывающей димеризацию с помощью домена FKBP12.

Алгоритм для предсказания набора транскрипционных факторов необходимых для преобразования клеток[править | править код]

Определение уникального набора транскрипционных факторов, которые необходимы для репрограммирования клеток представляет собой длительный и дорогостоящий процесс. Международная группа исследователей разработала алгоритм, называемый Магрифи (Mogrify), который помогает предсказать оптимальный набор клеточных факторов, необходимых для преобразования одного типа клеток человека в другой[157][158]. Появился также алгоритм, который предсказывает не только транскрипционные факторы необходимые для перепрограммирования, но также и идеальный выбор времени для применения этих факторов.[159][160]

Стратегии получения ИПСК для клинических испытаний[править | править код]

Разработаны критерии качества и стратегия производства ИПСК для клинических испытаний, так называемая cGMP (англ. current Good Manufacturing Practice)[161][162].

Система индуцируемого апоптоза для безопасности[править | править код]

Чтобы обезопасить применение ИПСК в клинике, было предложено одновременно с перепрограммированием клеток пациента в ИПСК, вводить в эти клетки индуцируемый малой молекулой ген каспазы-9 (IC9) для запуска каскадов апоптоза для самоубийства клеток образованных из этих ИПСК[163]. Такой «предохранитель» позволит избавляться от омоложенных клеток после того как они выполнили свою терапевтическую функцию или в случае образования опухоли из этих клеток[164][165][166][167][168].

Устойчивость к онкогенезу у ИПСК Голого землекопа[править | править код]

У голых землекопов уровень заболеваемости раком крайне низок по сравнению с другими млекопитающими. Обнаружено, что у ИПСК этого животного ослаблена способность к образованию тератом при трансплантации, что может быть связано[169]:

· с видоспецифической активацией супрессора опухоли ARF (англ. alternative reading frame), который является продуктом альтернативной рамки считывания гена CDKN2A (другой продукт этого гена — маркер старения белок p16), а также

· с мутацией, приводящей к разрушению онкогена ERAS, являющегося аналогом Ras и отвечающего за онкогенность ЭСК.[170]

Более того, удалось найти сигнальный путь ASIS (англ. ARF suppression-induced senescence), с помощью которого вероятно удастся защитить ИПСК от возникновения из них опухолей.[169]

Эффективность перепрограммирования в ИПСК[править | править код]

До настоящего времени недостаточно понятно, почему эффективность перепрограммирования с помощью факторов транскрипции значительно ниже, чем при пересадке ядра в ооцит. Показано, что большинство фибробластов кожи взрослого человека начинают процесс перепрограммирования сразу после обработки трансгенами Яманаки (Oct4, Sox2, Klf4, и c-Myc). Тем не менее, только небольшая часть (~ 1 %) из этих «новоиспеченных» ИПСК образуют впоследствии колонии ИПСК[171]. Причиной, понижающего эффективность перепрограммирования, возврата большинства клеток к состоянию дифференцировки может быть:

· недостаточная деятельность активируемой цитидиндезаминазы (AID) из-за чего клетки не могут стабилизироваться и долго поддерживать состояние плюрипотенции[172].

· недостаточная активность гена SMC1 кодирующего один из белков когезина (необходимого для образования внутрихромосомной петли сближающей промоутер гена с последующим энхансером, что необходимо для активации эндогенных генов плюрипотентности), делает невозможным достижение плюрипотентности[173]

· важную роль на поздних этапах перепрограммирования играют и ферментативные модификации гистонов. Показано, что необходимым условием эффективного перепрограммирования является подавление переносчика гистонов CAF-1[174] и белкового комплекса ремоделирования нуклеосом и деацетилирования (nucleosome remodeling and deacetylation — NuRD[en]. Избыточная экспрессия субъединицы NuRD, называемой Mbd3[en], ингибирует индукцию ИПСК. Причиной этого является деацетилирование комплексом NuRD лизина 27 в молекуле гистона Н3К27ac, что позволяет Поликомб Репрессорному комплексу 2 (PRC2) осуществить триметилирование лизина 27 в гистоне H3, приводящее, в конечном счете, к ингибированию ряда генов-маркеров плюрипотентности[175] , в том числе генов Oct4 и Nanog. Ингибирование Mbd3, с другой стороны, повышает эффективность перепрограммирования и способствует образованию плюрипотентных стволовых клеток, которые способны генерировать жизнеспособных химерных мышей, даже в случае отсутствия с-Мус или Sox2[176]. Очевидно, Mbd3/NuRD исполняет роль эпигенетического регулятора, который ограничивает экспрессию ключевых генов плюрипотентности. Поэтому подавление Mbd3/NuRD (например, с помощью бутирата, вальпроевой кислоты, субероиланилидгидроксамовой кислоты или трихостатина А) может стать мощным средством для повышения эффективности и точности перепрограммирования. Действительно, подавив Mbd3 удалось впервые осуществить детерминированное и синхронизированное перепрограммирование клеток кожи мыши и человека в ИПСК в течение всего семи дней и с невиданной ранее эффективностью — около 100 %[177]

Найден фактор BRD3 (bromodomain-containing protein 3), который опознаёт «коды» ацетилированных гистонов в хромосоме, а также активирует большой набор митотических генов, повышая таким образом митотическую активность клетки. Этот фактор позволил более чем в 20 раз повысить эффективность выхода ИПСК, сократить длительность перепрограммирования до нескольких дней и повысить качество перепрограммирования[178]. Как отмечено выше повысить эффективность репрограммирования позволяет также замена с-Мус на H1foo[113]. В случае когда требуется репрограммировать клетки пожилых пациентов повысить эффективность позволяет ингибирование H3K79 гистон метилтрансферазы называемой DOT1L (Disruptor of telomeric silencing 1-like)[179]

Элитные клетки[править | править код]

В первичных после биопсии культурах клеток при перепрограммировании лишь очень немногие клетки способны превратиться в ИПСК, и тех из них, которые такой способностью обладают, называют «элитными» клетками. Ученые нашли способ получения таких элитных клеток из соматических с помощью фактора C/EBPα (CCAAT/enhancer binding protein-α). В первичной культуре мышиных В-клеток непродолжительная экспрессия C/EBPα с последующим перепрограммированием факторами Яманаки позволила добиться 100-кратного увеличения эффективности перепрограммирования в плюрипотентные клетки, причём с участием 95 % клеточной популяции[180][181]. Такие искусственно созданные элитные клетки очень похожи на белые кровяные прогениторные клетки-предшественники костного мозга, известные как миелобласты.

Дифференцировка ИПСК в зрелые клетки в условиях in vivo[править | править код]

В тератоме[править | править код]

Тот факт, что ИПСК человека способны к образованию тератом не только в теле человека, но и в организме некоторых животных, в частности в организме мыши или свиньи, позволил разработать метод дифференцировки ИПСК в условиях in vivo. Для этого ИПСК вводят, вместе с клетками индуцирующими направленную дифференцировку, генмодифицированной свинье или мыши, у которой подавлена активация иммунной системы на клетки человека, а затем, вырезав образовавшуюся тератому, выделяют из неё необходимые дифференцированные клетки человека,[182] используя моноклональные антитела к тканеспецифичным маркерам на поверхности полученных клеток. Этот метод был успешно использован для получения функциональных мышечных[183], а также миелоидных, лимфоидных и эритроидных клеток человека пригодных для трансплантации (пока только мышам). Таким образом, доказана возможность производства in vivo из клеток пациента необходимых ему дифференцированных клеток для трансплантации, изготовления антител или скрининга лекарственных средств[184][185]. Используя перевиваемую генмодифицированную тератому с гиперэкспрессией факторов Gfi1b, c-Fos и Gata2 можно неоднократно трансплантировать мышкам тератому и на протяжении длительного времени стабильно получать полностью функциональные мышиные гематопоэтические стволовые клетки[186]

Используя лектин rBC2LCN избирательно связывающий ИПСК[187][188], или же MitoBloCK-6[189] и /или PluriSIn #1 можно очистить полученные прогениторные клетки от плюрипотентных клеток образующих тератому. Тот факт, что дифференцировка проходит в условиях тератомы позволяет надеяться, что полученные клетки достаточно устойчивы к стимулам способным запустить их обратный переход к дедифференцированному (плюрипотентному) состоянию, а значит безопасны.[190] Беспокойство, однако, вызывает тот факт, что «воспитанные» в тератоме у животных человеческие клетки за время своего «воспитания», по всей вероятности, поглощают значительное количество экзосом[191] произведенных окружающими клетками организма носителя тератомы, а значит, попав в организм человека, могут повести себя неадекватно.

Методика основанная на обнаружении ген-репортер-GFP-положительных клеток в тератоме, полученной из ИПСК, позволит идентифицировать и вырастить культуры ткани, используя индуцированные взрослые стволовые клетки различных типов, выделение которых ранее было затруднительно[192].

В организме животных-биоинкубаторов[править | править код]

Весьма перспективной средой для первоначальной дифференцировки ИПСК in vivo могут оказаться куриные эмбрионы[193]. Есть доказательства того, что микросреда этих эмбрионов оказывает анти-онкогенное действие на человеческие клетки и намного лучше чем условия in vitro[194]

Разработана технология «дозревания», полученных из ИПСК в условиях in vitro человеческих прогениторных клеток кардиомиоцитов, путем ксенотрансплантации их в организм новорожденных крыс, используемых в качестве in vivo биоинкубатора. Такое «дозревание» занимает ~6 недель[195]

См. также: Robert Lanza, Michael West (2013) Method for facilitating the production of differentiated cell types and tissues from embryonic and adult pluripotent and multipotent cells. Patent US 20130058900 A1

Получение клеток хрусталика и сетчатки глаза из ИПСК[править | править код]

В ближайшее время предполагается приступить к клиническим испытаниям, призванным продемонстрировать безопасность использования ИПСК для клеточной терапии людей с катарактой а также с возрастной дегенерацией жёлтого пятна — заболевания, которое повреждая сетчатку, может привести к слепоте[196]. Описаны методы получения из ИПСК клеток хрусталика[197] и сетчатки[198][199][200][201] и способы их использования для клеточной терапии[202][203][204], которая по крайней мере на 6 недель улучшала зрение у подопытных животных[205].

Получение из ИПСК легочных эпителиальных клеток[править | править код]

Хронические заболевания легких, такие как идиопатический фиброзирующий альвеолит, Силикоз, хроническая обструктивная болезнь легких и бронхиальная астма входят в число основных причин инвалидности и смертности. Поэтому исследователи ищут пути эффективной клеточной терапии и тканевой инженерии легких, которые бы позволили бороться с этими заболеваниями[206]. Были разработаны способы получения различных типов легочных клеток из ИПСК, которые могут быть взяты за основу для получения терапевтических клеток из материала, полученного от пациента.[207][208][209][210][211][212]

Получение нервных стволовых клеток человека из ИПСК[править | править код]

Юань и коллеги сообщили, что нервные стволовые клетки человека, индуцированные из ИПСК с помощью ретиноевой кислоты в бессывороточной среде имеют стабильный нейронный фенотип. После трансплантации крысам со смоделированным ишемическим инсультом, эти клетки не только выжили, но и мигрировали в зону ишемии мозга, где дифференцировались в зрелые нервные клетки, что оказало благотворное влияние на функциональное восстановление утраченных от повреждения в результате инсульта неврологических функций[213].

Получение стволовых клеток почки из ИПСК[править | править код]

Разработана система для быстрого (за 3 дня) и эффективного (70 %-80 % популяции) превращения ИПСК в клоны характерные для клеток почки с помощью ингибитора CHIR99021 и некоторых ростовых факторов[214]. Более того, удалось излечивать в опытах на мышах острые поражения почек, используя стволовые клетки почки, полученные из ИПСК[215].

Получение остеобластов из ИПСК[править | править код]

Известно что аденозин и его рецепторы, в частности A2bR играют важную роль в регенерации костных переломов[216][217]. Простое добавление в культуральную среду аденозина позволило превратить человеческие ИПСК в остеобласты. При трансплантации этих остеобластов мышке, с использованием макропористой синтетической матрицы, остеобласты полученные из ИПСК, участвовали в регенерации повреждений кости образуя новые ткани и стимулируя кальцификацию. При этом не наблюдалось образования тератом, что очевидно свидетельствует о 100 % дифференцировке клеток ИПСК в остеобласты[218].

Наивные плюрипотентные стволовые клетки (нПСК)[править | править код]

Человеческие плюрипотентные стволовые клетки, независимо от того, получены ли они из бластоцисты или являются результатом перепрограммирования соматических клеток, существенно отличаются от классических мышиных эмбриональных стволовых клеток и по мнению ряда исследователей представляют более позднюю стадию развития эпибласта[219][220]. Удалось получить нПСК у которых утеряна эпигенетическая «память» метилирования ДНК как гаметы (ооцита), так и человеческой бластоцисты. Такие клетки в отличие от ИПСК не имеют антиген SSEA4 (Stage Specific Embryonic Antigen 4)[221]. Перевести ЭСК и ИПСК человека в наивное состояние позволяет гиперэкспрессия фактора YAP (Yes-associated protein). Гиперэкспрессию YAP с получением наивного состояния можно также имитировать путём добавления к культуральной среде (лизофосфатидной кислоты[en] (LPA), являющейся активатором YAP[222].

Репрограммирование человеческих ЭСК и ИПСК с помощью рекомбинантного, усеченного человеческого NME7 (найденного в семенниках фактора, содержащего два домена нуклеозид дифосфат киназы (NDPK[en]) и способного связываться с расщепленной формой трансмембранного рецептора MUC1, называемой MUC1*[223]) позволило получить стабильно наивные клетки, которые более пригодны для широкомасштабного клонирования и имеют расширенный потенциал дифференциации[224]. На основе таких клеток можно создать «фабрики клеток» для промышленного производства продукции необходимой для нужд клеточной терапии.

Перевести ИПСК в стабильно наивное состояние, подобное внутренней клеточной массе (ВКМ) человека перед имплантацией, позволяет инкубация в буфере LIF-3i состоящем из коктейля трех малых молекул: XAV939 подавляющей cигнальный путь Wnt путем ингибирования танкиразы/PARP (поли(АДФ-рибоза)-полимеразы), CHIR99021 ингибирующей GSK3β и PD0325901 ингибирующей сигнальные пути MAPK/ERK[225][226]

Регион-селективные плюрипотентные стволовые клетки (рсПСК)[править | править код]

Ву и его коллеги обнаружили, что комбинация свободной от сыворотки среды, фактора роста фибробластов 2 (FGF2) и ингибитора сигнальных путей Wnt позволяет получить в результате устойчивую линию рсПСК (регион-селективных плюрипотентных стволовых клеток, по англ rsPSCs) клеток человека. По транскриптому эти клетки напоминали таковые из задних клеток раннего эмбриона мыши. Трансплантация этих клеток в 7,5-дневные эмбрионы мыши привела к их эффективному включению в задний, но не в другие части эмбриона. После 36 часов культивирования этих химерных эмбрионов, клетки рсПСК проявили способность к пролиферации и способность к дифференцировке в ткани трёх зародышевых листков. Хотя исследователи остановили дальнейшую дифференцировку этих клеток, предполагается, что каждый из образованных этими клетками зародышевых листков способен дать начало определённым тканям и органам[227][228]. Важно отметить, что в отличие от других человеческих стволовых клеток, которые, как правило, не удается интегрировать в эмбрион мыши, человеческие rsPSCs способны к такой интеграции и к развитию в ранние стадии тканей человека[229].

Клетки F класса[править | править код]

Клетки F класса в отличие от ИПСК не способны включаться в ткани организма и участвовать в построении химерного организма. Тем не менее они удовлетворяют другому тесту на плюрипотентность — способны образовывать тератомы. По сравнению с обычными стволовыми клетками подобными эмбриональным и ИПСК,клетки F-типа растут в лаборатории быстрее и их выращивать проще и дешевле — их можно просто поместить в большой сосуд с питательной средой и вырастить за несколько дней или часов, а не за несколько недель как обычные ИПСК[230][231].

Индуцированные прогениторные стволовые клетки[править | править код]

Методы прямой трансдифференцировки[править | править код]

В связи с тем, что использование ИПСК для клеточной терапии сопряжено с большим риском опухолей и рака, необходима разработка методов получения более безопасных клеточных линий, пригодных для применения в клинике. Альтернативой методам ИПСК стала техника так называемого «прямого репрограммирования», то есть индуцируемой определёнными факторами прямой трансдифференцировки, без предварительного прохождения клеток через стадии плюрипотентного состояния[232][233][234][235][236][237]. Основу для такого подхода заложили исследования Тейлор и Джонса (Taylor and Jones), показавших, что воздействие 5-азацитидина — реактива, вызывающего деметилирование ДНК — на бессмертную линию клеток мышиных эмбриональных фибробластов способно вызвать образование миогенных, хондрогенных и адипогенных клонов[238] и Вейнтрауба с соавторами, обнаруживших, что для репрограммирования достаточно активации всего одного гена, позднее названного MyoD1[239][240][241]. По сравнению с ИПСК, для получения которых требуются не менее двух недель, образование индуцированных прогениторных клеток происходит сравнительно быстро — иногда за несколько дней. Эффективность перепрограммирования также обычно во много раз выше. Для этого перепрограммирования не всегда требуется деление клетки[242]. Но главное, это то, что получаемые в результате перепрограммирования мультипотентные соматические стволовые клетки более пригодны для клеточной терапии, так как не образуют тератомы[243][244]. См. также обзор[245]

Трансдифференцировка с помощью 5-азацитидина и тромбоцитарного фактора роста[править | править код]

Разработан метод получения, так называемых, индуцированных мультипотентных стволовых клеток (ИМПСК) путём непродолжительной обработки постнатальных стволовых клеток костного мозга и жировых клеток комбинацией фактора роста (тромбоцитарный фактор роста — АВ (PDGF-AB)) и 5-азацитидина. Авторы этого исследования утверждают, что: «В отличие от первичных мезенхимальных стволовых клеток, которые хотя и используются в клинической практике для содействия восстановлению тканей, но не способны сами включаться в эту ткань, ИМПСК способны к непосредственному участию процессах регенерации тканей и при этом не образуют опухолей», в связи с чем «могут быть использованы для регенерации различных тканей»[246][247][248]

Трансдифференцировка зрелых клеток всего одним фактором транскрипции[править | править код]

Особенностью нематоды Caenorhabditis elegans является настолько жёсткая программа развития, что соматическая клетка, находящаяся в определённом участке организма, как правило, имеет одинаковую родословную у всех особей.[249] При этом зрелые клетки, в отличие от ранних эмбриональных клеток, обычно очень устойчивы к изменению их фенотипа. Тем не менее, обнаружено, что как у интактных личинок, так и у неповреждённых взрослых нематод краткосрочный синтез всего одного фактора транскрипции, а именно фактора ELT-7 GATA[en][250] может превратить фенотип полностью дифференцированной, высокоспециализированной не-энтодермальной клетки фаринкса (глотки) в фенотип полностью дифференцированной энтодермальной клетки кишечника. Это превращение происходит «в одну стадию» — путём прямой трансдифференцировки, без каких-либо промежуточных стадий дедифференцировки[251][252].



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.