Хелпикс

Главная

Контакты

Случайная статья





Практическая работа



Практическая работа

Тема: Поиск энтропии случайных величин.

Цель: научиться вычислять энтропию случайной величины.

Время выполнения: 2 часа

Оборудование: ПК.

Программное обеспечение: операционная система, калькулятор, текстовый редактор.

Теоретические основы

Энтропия в теории информации — мера хаотичности информации, неопределённость появления какого-либо символа первичного алфавита. При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.

Так, возьмём, например, последовательность символов, составляющих какое-либо предложение на русском языке. Каждый символ появляется с разной частотой, следовательно, неопределённость появления для некоторых символов больше, чем для других. Если же учесть, что некоторые сочетания символов встречаются очень редко, то неопределённость ещё более уменьшается (в этом случае говорят об энтропии n-ого порядка). Концепции информации и энтропии имеют глубокие связи друг с другом, но, несмотря на это, разработка теорий в статистической механике и теории информации заняла много лет, чтобы сделать их соответствующими друг другу.

Энтропия независимых случайных событий x с n возможными состояниями (от 1 до n) рассчитывается по формуле:

Эта величина также называется средней энтропией сообщения. Величина называется частной энтропией, характеризующей только i-e состояние.

Таким образом, энтропия события x является суммой с противоположным знаком всех произведений относительных частот появления события i, умноженных на их же двоичные логарифмы (основание 2 выбрано только для удобства работы с информацией, представленной в двоичной форме). Это определение для дискретных случайных событий можно расширить для функции распределения вероятностей.

Шеннон вывел это определение энтропии из следующих предположений:

· мера должна быть непрерывной; т. е. изменение значения величины вероятности на малую величину должно вызывать малое результирующее изменение энтропии;

· в случае, когда все варианты (буквы в приведенном примере) равновероятны, увеличение количества вариантов (букв) должно всегда увеличивать полную энтропию;

· должна быть возможность сделать выбор (в нашем примере букв) в два шага, в которых энтропия конечного результата должна будет является суммой энтропий промежуточных результатов.

Шеннон показал, что любое определение энтропии, удовлетворяющее этим предположениям, должно быть в форме:

где K — константа (и в действительности нужна только для выбора единиц измерения).

Шеннон определил, что измерение энтропии (H = − p1 log2 p1 − … − pn log2 pn), применяемое к источнику информации, может определить требования к минимальной пропускной способности канала, требуемой для надежной передачи информации в виде закодированных двоичных чисел. Для вывода формулы Шеннона необходимо вычислить математическое ожидания «количества информации», содержащегося в цифре из источника информации. Мера энтропии Шеннона выражает неуверенность реализации случайной переменной. Таким образом, энтропия является разницей между информацией, содержащейся в сообщении, и той частью информации, которая точно известна (или хорошо предсказуема) в сообщении. Примером этого является избыточность языка — имеются явные статистические закономерности в появлении букв, пар последовательных букв, троек и т.д.

В общем случае b-арная энтропия (где b равно 2,3,... ) источника = (S,P) с исходным алфавитом S = {a1, …, an} и дискретным распределением вероятности P = {p1, …, pn} где pi является вероятностью ai (pi = p(ai)) определяется формулой:

Определение энтропии Шеннона очень связано с понятием термодинамической энтропии. Больцман и Гиббс проделали большую работу по статистической термодинамике, которая способствовала принятию слова «энтропия» в информационную теорию. Существует связь между понятиями энтропии в термодинамике и теории информации. Например, демон Максвелла также противопоставляет термодинамическую энтропию информации, и получение какого-либо количества информации равно потерянной энтропии.

СВОЙСТВА ЭНТРОПИИ

1.Энтропия является вещественной и неотрицательной величиной.

2.Энтропия – величина ограниченная.

3.Энтропия обращается в нуль лишь в том случае, если вероятность одного из состояний равна единице; тогда вероятности всех остальных состояний, естественно, равны нулю. Это положение соответствует случаю, когда состояние источника полностью определено.

4.Энтропия максимальна, когда все состояния источника равновероятны.

5. Энтропия источника и с двумя состояниями u1 и u2 изменяется от нуля до единицы, достигая максимума при равенстве их вероятностей:

р(и1) = р= р(u2) = 1 — р = 0,5.

6.Энтропия объединения нескольких статистически независимых источников информации равна сумме энтропии исходных источников.

7. Энтропия характеризует среднюю неопределенность выбора одного состояния из ансамбля. При ее определении используют только вероятности состояний, полностью игнорируя их содержательную сторону. Поэтому энтропия не может служить средством решения любых задач, связанных с неопределенностью.

8. Энтропия как мера неопределенности согласуется с экспериментальными данными, полученными при изучении психологических реакций человека, в частности реакции выбора. Установлено, что время безошибочной реакции на последовательность беспорядочно чередующихся равновероятных раздражителей (например, загорающихся лампочек) растет с увеличением их числа так же, как энтропия. Это время характеризует неопределенность выбора одного раздражителя. Замена равновероятных раздражителей неравновероятными приводит к снижению среднего времени реакции ровно настолько, насколько уменьшается энтропия.

Дифференциальной энтропией случайной величины X называется величина:

HД(x)=H(x)-H(y)= -

Если произвести квантование случайных величин Х1, Х2…Хn по уровню с числом уровней квантования равным m , то возможное число реализаций длительностью Тn станет конечным и равным М = тn.

Каждая из реализаций С1, С2,….Сi,…Сmбудет иметь определенную вероятность появления в эксперименте по наблюдению реализаций. Тогда неопределенность (энтропия) и количество информации в реализации (в среднем по всем реализациям) определяются равенством

 

 

 

Энтропия и количество информации на одну степень свободы (на одну выборку) равны

 

Избыточностьпоказывает, какая доля максимально возможной при заданном объеме алфавита неопределенности не используется источником.

=(Hmax-Hu)/Hmax ,

Где Нu – энтропия рассматриваемого источника, Нmax – максимально возможное значение его энтропии, которое может быть достигнуто подбором распределения и ликвидацией взаимозависимости элементов алфавита. Так, для дискретного источника с М элементами

Hmax=log M

 

Задачи по вычислению энтропии

 

1. Найдите энтропию для числа белых шаров при извлечении двух шаров из урны, содержащей два белых и один черный шар.

2. Найдите энтропию для числа козырных карт при извлечении двух карт из колоды в 36 карт.

3. Какую степень неопределенности содержит опыт угадывания суммы очков на извлеченной кости из полного набора домино?

4. Найдите энтропию для числа тузов при извлечении трех карт из карт с картинками.

5. Найдите дифференциальную энтропию для равномерного распределения.

6. Найдите дифференциальную энтропию для показательного закона распределения, если известно, что случайная величина х принимает значение меньше единицы с вероятностью 0,5.

 

Отчет должен быть оформлен в текстовом редакторе и содержать:

· наименование работы;

· цель работы;

· задание;

· последовательность выполнения работы;

· ответы на контрольные вопросы;

· вывод о проделанной работе.

Контрольные вопросы

1. Как определяется энтропия дискретных случайных величин?

2. Приведите примеры энтропий для классических законов распределения.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.